Weather agent
Example of PydanticAI with multiple tools which the LLM needs to call in turn to answer a question.
Demonstrates:
- tools
- agent dependencies
- streaming text responses
- Building a Gradio UI for the agent
In this case the idea is a "weather" agent — the user can ask for the weather in multiple locations,
the agent will use the get_lat_lng
tool to get the latitude and longitude of the locations, then use
the get_weather
tool to get the weather for those locations.
Running the Example
To run this example properly, you might want to add two extra API keys (Note if either key is missing, the code will fall back to dummy data, so they're not required):
- A weather API key from tomorrow.io set via
WEATHER_API_KEY
- A geocoding API key from geocode.maps.co set via
GEO_API_KEY
With dependencies installed and environment variables set, run:
python -m pydantic_ai_examples.weather_agent
uv run -m pydantic_ai_examples.weather_agent
Example Code
from __future__ import annotations as _annotations
import asyncio
import os
from dataclasses import dataclass
from typing import Any
import logfire
from devtools import debug
from httpx import AsyncClient
from pydantic_ai import Agent, ModelRetry, RunContext
# 'if-token-present' means nothing will be sent (and the example will work) if you don't have logfire configured
logfire.configure(send_to_logfire='if-token-present')
@dataclass
class Deps:
client: AsyncClient
weather_api_key: str | None
geo_api_key: str | None
weather_agent = Agent(
'openai:gpt-4o',
# 'Be concise, reply with one sentence.' is enough for some models (like openai) to use
# the below tools appropriately, but others like anthropic and gemini require a bit more direction.
system_prompt=(
'Be concise, reply with one sentence.'
'Use the `get_lat_lng` tool to get the latitude and longitude of the locations, '
'then use the `get_weather` tool to get the weather.'
),
deps_type=Deps,
retries=2,
)
@weather_agent.tool
async def get_lat_lng(
ctx: RunContext[Deps], location_description: str
) -> dict[str, float]:
"""Get the latitude and longitude of a location.
Args:
ctx: The context.
location_description: A description of a location.
"""
if ctx.deps.geo_api_key is None:
# if no API key is provided, return a dummy response (London)
return {'lat': 51.1, 'lng': -0.1}
params = {
'q': location_description,
'api_key': ctx.deps.geo_api_key,
}
with logfire.span('calling geocode API', params=params) as span:
r = await ctx.deps.client.get('https://geocode.maps.co/search', params=params)
r.raise_for_status()
data = r.json()
span.set_attribute('response', data)
if data:
return {'lat': data[0]['lat'], 'lng': data[0]['lon']}
else:
raise ModelRetry('Could not find the location')
@weather_agent.tool
async def get_weather(ctx: RunContext[Deps], lat: float, lng: float) -> dict[str, Any]:
"""Get the weather at a location.
Args:
ctx: The context.
lat: Latitude of the location.
lng: Longitude of the location.
"""
if ctx.deps.weather_api_key is None:
# if no API key is provided, return a dummy response
return {'temperature': '21 °C', 'description': 'Sunny'}
params = {
'apikey': ctx.deps.weather_api_key,
'location': f'{lat},{lng}',
'units': 'metric',
}
with logfire.span('calling weather API', params=params) as span:
r = await ctx.deps.client.get(
'https://api.tomorrow.io/v4/weather/realtime', params=params
)
r.raise_for_status()
data = r.json()
span.set_attribute('response', data)
values = data['data']['values']
# https://docs.tomorrow.io/reference/data-layers-weather-codes
code_lookup = {
1000: 'Clear, Sunny',
1100: 'Mostly Clear',
1101: 'Partly Cloudy',
1102: 'Mostly Cloudy',
1001: 'Cloudy',
2000: 'Fog',
2100: 'Light Fog',
4000: 'Drizzle',
4001: 'Rain',
4200: 'Light Rain',
4201: 'Heavy Rain',
5000: 'Snow',
5001: 'Flurries',
5100: 'Light Snow',
5101: 'Heavy Snow',
6000: 'Freezing Drizzle',
6001: 'Freezing Rain',
6200: 'Light Freezing Rain',
6201: 'Heavy Freezing Rain',
7000: 'Ice Pellets',
7101: 'Heavy Ice Pellets',
7102: 'Light Ice Pellets',
8000: 'Thunderstorm',
}
return {
'temperature': f'{values["temperatureApparent"]:0.0f}°C',
'description': code_lookup.get(values['weatherCode'], 'Unknown'),
}
async def main():
async with AsyncClient() as client:
# create a free API key at https://www.tomorrow.io/weather-api/
weather_api_key = os.getenv('WEATHER_API_KEY')
# create a free API key at https://geocode.maps.co/
geo_api_key = os.getenv('GEO_API_KEY')
deps = Deps(
client=client, weather_api_key=weather_api_key, geo_api_key=geo_api_key
)
result = await weather_agent.run(
'What is the weather like in London and in Wiltshire?', deps=deps
)
debug(result)
print('Response:', result.data)
if __name__ == '__main__':
asyncio.run(main())
Running the UI
You can build multi-turn chat applications for your agent with Gradio, a framework for building AI web applications entirely in python. Gradio comes with built-in chat components and agent support so the entire UI will be implemented in a single python file!
Here's what the UI looks like for the weather agent:
Note, to run the UI, you'll need Python 3.10+.
pip install gradio>=5.9.0
python/uv-run -m pydantic_ai_examples.weather_agent_gradio
UI Code
#! pydantic_ai_examples/weather_agent_gradio.py