pydantic_ai.Agent
Bases: Generic[AgentDeps, ResultData]
Class for defining "agents" - a way to have a specific type of "conversation" with an LLM.
Agents are generic in the dependency type they take AgentDeps
and the result data type they return, ResultData
.
By default, if neither generic parameter is customised, agents have type Agent[None, str]
.
Minimal usage example:
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
result = agent.run_sync('What is the capital of France?')
print(result.data)
#> Paris
Source code in pydantic_ai_slim/pydantic_ai/agent.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 |
|
__init__
__init__(
model: Model | KnownModelName | None = None,
*,
result_type: type[ResultData] = str,
system_prompt: str | Sequence[str] = (),
deps_type: type[AgentDeps] = NoneType,
retries: int = 1,
result_tool_name: str = "final_result",
result_tool_description: str | None = None,
result_retries: int | None = None,
defer_model_check: bool = False
)
Create an agent.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model | KnownModelName | None
|
The default model to use for this agent, if not provide, you must provide the model when calling the agent. |
None
|
result_type
|
type[ResultData]
|
The type of the result data, used to validate the result data, defaults to |
str
|
system_prompt
|
str | Sequence[str]
|
Static system prompts to use for this agent, you can also register system
prompts via a function with |
()
|
deps_type
|
type[AgentDeps]
|
The type used for dependency injection, this parameter exists solely to allow you to fully
parameterize the agent, and therefore get the best out of static type checking.
If you're not using deps, but want type checking to pass, you can set |
NoneType
|
retries
|
int
|
The default number of retries to allow before raising an error. |
1
|
result_tool_name
|
str
|
The name of the tool to use for the final result. |
'final_result'
|
result_tool_description
|
str | None
|
The description of the final result tool. |
None
|
result_retries
|
int | None
|
The maximum number of retries to allow for result validation, defaults to |
None
|
defer_model_check
|
bool
|
by default, if you provide a named model,
it's evaluated to create a |
False
|
Source code in pydantic_ai_slim/pydantic_ai/agent.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
run
async
run(
user_prompt: str,
*,
message_history: list[Message] | None = None,
model: Model | KnownModelName | None = None,
deps: AgentDeps = None
) -> RunResult[ResultData]
Run the agent with a user prompt in async mode.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
user_prompt
|
str
|
User input to start/continue the conversation. |
required |
message_history
|
list[Message] | None
|
History of the conversation so far. |
None
|
model
|
Model | KnownModelName | None
|
Optional model to use for this run, required if |
None
|
deps
|
AgentDeps
|
Optional dependencies to use for this run. |
None
|
Returns:
Type | Description |
---|---|
RunResult[ResultData]
|
The result of the run. |
Source code in pydantic_ai_slim/pydantic_ai/agent.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
|
run_sync
run_sync(
user_prompt: str,
*,
message_history: list[Message] | None = None,
model: Model | KnownModelName | None = None,
deps: AgentDeps = None
) -> RunResult[ResultData]
Run the agent with a user prompt synchronously.
This is a convenience method that wraps self.run
with loop.run_until_complete()
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
user_prompt
|
str
|
User input to start/continue the conversation. |
required |
message_history
|
list[Message] | None
|
History of the conversation so far. |
None
|
model
|
Model | KnownModelName | None
|
Optional model to use for this run, required if |
None
|
deps
|
AgentDeps
|
Optional dependencies to use for this run. |
None
|
Returns:
Type | Description |
---|---|
RunResult[ResultData]
|
The result of the run. |
Source code in pydantic_ai_slim/pydantic_ai/agent.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
run_stream
async
run_stream(
user_prompt: str,
*,
message_history: list[Message] | None = None,
model: Model | KnownModelName | None = None,
deps: AgentDeps = None
) -> AsyncIterator[
StreamedRunResult[AgentDeps, ResultData]
]
Run the agent with a user prompt in async mode, returning a streamed response.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
user_prompt
|
str
|
User input to start/continue the conversation. |
required |
message_history
|
list[Message] | None
|
History of the conversation so far. |
None
|
model
|
Model | KnownModelName | None
|
Optional model to use for this run, required if |
None
|
deps
|
AgentDeps
|
Optional dependencies to use for this run. |
None
|
Returns:
Type | Description |
---|---|
AsyncIterator[StreamedRunResult[AgentDeps, ResultData]]
|
The result of the run. |
Source code in pydantic_ai_slim/pydantic_ai/agent.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
model
instance-attribute
model: Model | KnownModelName | None
The default model configured for this agent.
override
override(
*,
deps: AgentDeps | Unset = UNSET,
model: Model | KnownModelName | Unset = UNSET
) -> Iterator[None]
Context manager to temporarily override agent dependencies and model.
This is particularly useful when testing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deps
|
AgentDeps | Unset
|
The dependencies to use instead of the dependencies passed to the agent run. |
UNSET
|
model
|
Model | KnownModelName | Unset
|
The model to use instead of the model passed to the agent run. |
UNSET
|
Source code in pydantic_ai_slim/pydantic_ai/agent.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
|
last_run_messages
class-attribute
instance-attribute
The messages from the last run, useful when a run raised an exception.
Note: these are not used by the agent, e.g. in future runs, they are just stored for developers' convenience.
system_prompt
system_prompt(
func: Callable[[RunContext[AgentDeps]], str]
) -> Callable[[RunContext[AgentDeps]], str]
system_prompt(
func: Callable[[RunContext[AgentDeps]], Awaitable[str]]
) -> Callable[[RunContext[AgentDeps]], Awaitable[str]]
system_prompt(
func: SystemPromptFunc[AgentDeps],
) -> SystemPromptFunc[AgentDeps]
Decorator to register a system prompt function.
Optionally takes RunContext
as it's only argument.
Can decorate a sync or async functions.
Overloads for every possible signature of system_prompt
are included so the decorator doesn't obscure
the type of the function, see tests/typed_agent.py
for tests.
Example:
from pydantic_ai import Agent, RunContext
agent = Agent('test', deps_type=str)
@agent.system_prompt
def simple_system_prompt() -> str:
return 'foobar'
@agent.system_prompt
async def async_system_prompt(ctx: RunContext[str]) -> str:
return f'{ctx.deps} is the best'
result = agent.run_sync('foobar', deps='spam')
print(result.data)
#> success (no tool calls)
Source code in pydantic_ai_slim/pydantic_ai/agent.py
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
|
tool
tool(
func: ToolContextFunc[AgentDeps, ToolParams]
) -> ToolContextFunc[AgentDeps, ToolParams]
tool(*, retries: int | None = None) -> Callable[
[ToolContextFunc[AgentDeps, ToolParams]],
ToolContextFunc[AgentDeps, ToolParams],
]
tool(
func: (
ToolContextFunc[AgentDeps, ToolParams] | None
) = None,
/,
*,
retries: int | None = None,
) -> Any
Decorator to register a tool function which takes
RunContext
as its first argument.
Can decorate a sync or async functions.
The docstring is inspected to extract both the tool description and description of each parameter, learn more.
We can't add overloads for every possible signature of tool, since the return type is a recursive union
so the signature of functions decorated with @agent.tool
is obscured.
Example:
from pydantic_ai import Agent, RunContext
agent = Agent('test', deps_type=int)
@agent.tool
def foobar(ctx: RunContext[int], x: int) -> int:
return ctx.deps + x
@agent.tool(retries=2)
async def spam(ctx: RunContext[str], y: float) -> float:
return ctx.deps + y
result = agent.run_sync('foobar', deps=1)
print(result.data)
#> {"foobar":1,"spam":1.0}
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
ToolContextFunc[AgentDeps, ToolParams] | None
|
The tool function to register. |
None
|
retries
|
int | None
|
The number of retries to allow for this tool, defaults to the agent's default retries, which defaults to 1. |
None
|
Source code in pydantic_ai_slim/pydantic_ai/agent.py
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
|
tool_plain
tool_plain(
func: ToolPlainFunc[ToolParams],
) -> ToolPlainFunc[ToolParams]
tool_plain(
*, retries: int | None = None
) -> Callable[
[ToolPlainFunc[ToolParams]], ToolPlainFunc[ToolParams]
]
tool_plain(
func: ToolPlainFunc[ToolParams] | None = None,
/,
*,
retries: int | None = None,
) -> Any
Decorator to register a tool function which DOES NOT take RunContext
as an argument.
Can decorate a sync or async functions.
The docstring is inspected to extract both the tool description and description of each parameter, learn more.
We can't add overloads for every possible signature of tool, since the return type is a recursive union
so the signature of functions decorated with @agent.tool
is obscured.
Example:
from pydantic_ai import Agent, RunContext
agent = Agent('test')
@agent.tool
def foobar(ctx: RunContext[int]) -> int:
return 123
@agent.tool(retries=2)
async def spam(ctx: RunContext[str]) -> float:
return 3.14
result = agent.run_sync('foobar', deps=1)
print(result.data)
#> {"foobar":123,"spam":3.14}
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
ToolPlainFunc[ToolParams] | None
|
The tool function to register. |
None
|
retries
|
int | None
|
The number of retries to allow for this tool, defaults to the agent's default retries, which defaults to 1. |
None
|
Source code in pydantic_ai_slim/pydantic_ai/agent.py
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
|
result_validator
result_validator(
func: Callable[
[RunContext[AgentDeps], ResultData], ResultData
]
) -> Callable[
[RunContext[AgentDeps], ResultData], ResultData
]
result_validator(
func: Callable[
[RunContext[AgentDeps], ResultData],
Awaitable[ResultData],
]
) -> Callable[
[RunContext[AgentDeps], ResultData],
Awaitable[ResultData],
]
result_validator(
func: Callable[[ResultData], ResultData]
) -> Callable[[ResultData], ResultData]
result_validator(
func: Callable[[ResultData], Awaitable[ResultData]]
) -> Callable[[ResultData], Awaitable[ResultData]]
result_validator(
func: ResultValidatorFunc[AgentDeps, ResultData]
) -> ResultValidatorFunc[AgentDeps, ResultData]
Decorator to register a result validator function.
Optionally takes RunContext
as it's first argument.
Can decorate a sync or async functions.
Overloads for every possible signature of result_validator
are included so the decorator doesn't obscure
the type of the function, see tests/typed_agent.py
for tests.
Example:
from pydantic_ai import Agent, ModelRetry, RunContext
agent = Agent('test', deps_type=str)
@agent.result_validator
def result_validator_simple(data: str) -> str:
if 'wrong' in data:
raise ModelRetry('wrong response')
return data
@agent.result_validator
async def result_validator_deps(ctx: RunContext[str], data: str) -> str:
if ctx.deps in data:
raise ModelRetry('wrong response')
return data
result = agent.run_sync('foobar', deps='spam')
print(result.data)
#> success (no tool calls)
Source code in pydantic_ai_slim/pydantic_ai/agent.py
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
|