Skip to content

pydantic_ai.models.groq

Setup

For details on how to set up authentication with this model, see model configuration for Groq.

GroqModelName module-attribute

GroqModelName = Literal[
    "llama-3.1-70b-versatile",
    "llama3-groq-70b-8192-tool-use-preview",
    "llama3-groq-8b-8192-tool-use-preview",
    "llama-3.1-70b-specdec",
    "llama-3.1-8b-instant",
    "llama-3.2-1b-preview",
    "llama-3.2-3b-preview",
    "llama-3.2-11b-vision-preview",
    "llama-3.2-90b-vision-preview",
    "llama3-70b-8192",
    "llama3-8b-8192",
    "mixtral-8x7b-32768",
    "gemma2-9b-it",
    "gemma-7b-it",
]

Named Groq models.

See the Groq docs for a full list.

GroqModel dataclass

Bases: Model

A model that uses the Groq API.

Internally, this uses the Groq Python client to interact with the API.

Apart from __init__, all methods are private or match those of the base class.

Source code in pydantic_ai_slim/pydantic_ai/models/groq.py
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
@dataclass(init=False)
class GroqModel(Model):
    """A model that uses the Groq API.

    Internally, this uses the [Groq Python client](https://github.com/groq/groq-python) to interact with the API.

    Apart from `__init__`, all methods are private or match those of the base class.
    """

    model_name: GroqModelName
    client: AsyncGroq = field(repr=False)

    def __init__(
        self,
        model_name: GroqModelName,
        *,
        api_key: str | None = None,
        groq_client: AsyncGroq | None = None,
        http_client: AsyncHTTPClient | None = None,
    ):
        """Initialize a Groq model.

        Args:
            model_name: The name of the Groq model to use. List of model names available
                [here](https://console.groq.com/docs/models).
            api_key: The API key to use for authentication, if not provided, the `GROQ_API_KEY` environment variable
                will be used if available.
            groq_client: An existing
                [`AsyncGroq`](https://github.com/groq/groq-python?tab=readme-ov-file#async-usage)
                client to use, if provided, `api_key` and `http_client` must be `None`.
            http_client: An existing `httpx.AsyncClient` to use for making HTTP requests.
        """
        self.model_name = model_name
        if groq_client is not None:
            assert http_client is None, 'Cannot provide both `groq_client` and `http_client`'
            assert api_key is None, 'Cannot provide both `groq_client` and `api_key`'
            self.client = groq_client
        elif http_client is not None:
            self.client = AsyncGroq(api_key=api_key, http_client=http_client)
        else:
            self.client = AsyncGroq(api_key=api_key, http_client=cached_async_http_client())

    async def agent_model(
        self,
        function_tools: Mapping[str, AbstractToolDefinition],
        allow_text_result: bool,
        result_tools: Sequence[AbstractToolDefinition] | None,
    ) -> AgentModel:
        check_allow_model_requests()
        tools = [self._map_tool_definition(r) for r in function_tools.values()]
        if result_tools is not None:
            tools += [self._map_tool_definition(r) for r in result_tools]
        return GroqAgentModel(
            self.client,
            self.model_name,
            allow_text_result,
            tools,
        )

    def name(self) -> str:
        return f'groq:{self.model_name}'

    @staticmethod
    def _map_tool_definition(f: AbstractToolDefinition) -> chat.ChatCompletionToolParam:
        return {
            'type': 'function',
            'function': {
                'name': f.name,
                'description': f.description,
                'parameters': f.json_schema,
            },
        }

__init__

__init__(
    model_name: GroqModelName,
    *,
    api_key: str | None = None,
    groq_client: AsyncGroq | None = None,
    http_client: AsyncClient | None = None
)

Initialize a Groq model.

Parameters:

Name Type Description Default
model_name GroqModelName

The name of the Groq model to use. List of model names available here.

required
api_key str | None

The API key to use for authentication, if not provided, the GROQ_API_KEY environment variable will be used if available.

None
groq_client AsyncGroq | None

An existing AsyncGroq client to use, if provided, api_key and http_client must be None.

None
http_client AsyncClient | None

An existing httpx.AsyncClient to use for making HTTP requests.

None
Source code in pydantic_ai_slim/pydantic_ai/models/groq.py
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def __init__(
    self,
    model_name: GroqModelName,
    *,
    api_key: str | None = None,
    groq_client: AsyncGroq | None = None,
    http_client: AsyncHTTPClient | None = None,
):
    """Initialize a Groq model.

    Args:
        model_name: The name of the Groq model to use. List of model names available
            [here](https://console.groq.com/docs/models).
        api_key: The API key to use for authentication, if not provided, the `GROQ_API_KEY` environment variable
            will be used if available.
        groq_client: An existing
            [`AsyncGroq`](https://github.com/groq/groq-python?tab=readme-ov-file#async-usage)
            client to use, if provided, `api_key` and `http_client` must be `None`.
        http_client: An existing `httpx.AsyncClient` to use for making HTTP requests.
    """
    self.model_name = model_name
    if groq_client is not None:
        assert http_client is None, 'Cannot provide both `groq_client` and `http_client`'
        assert api_key is None, 'Cannot provide both `groq_client` and `api_key`'
        self.client = groq_client
    elif http_client is not None:
        self.client = AsyncGroq(api_key=api_key, http_client=http_client)
    else:
        self.client = AsyncGroq(api_key=api_key, http_client=cached_async_http_client())

GroqAgentModel dataclass

Bases: AgentModel

Implementation of AgentModel for Groq models.

Source code in pydantic_ai_slim/pydantic_ai/models/groq.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
@dataclass
class GroqAgentModel(AgentModel):
    """Implementation of `AgentModel` for Groq models."""

    client: AsyncGroq
    model_name: str
    allow_text_result: bool
    tools: list[chat.ChatCompletionToolParam]

    async def request(self, messages: list[Message]) -> tuple[ModelAnyResponse, result.Cost]:
        response = await self._completions_create(messages, False)
        return self._process_response(response), _map_cost(response)

    @asynccontextmanager
    async def request_stream(self, messages: list[Message]) -> AsyncIterator[EitherStreamedResponse]:
        response = await self._completions_create(messages, True)
        async with response:
            yield await self._process_streamed_response(response)

    @overload
    async def _completions_create(
        self, messages: list[Message], stream: Literal[True]
    ) -> AsyncStream[ChatCompletionChunk]:
        pass

    @overload
    async def _completions_create(self, messages: list[Message], stream: Literal[False]) -> chat.ChatCompletion:
        pass

    async def _completions_create(
        self, messages: list[Message], stream: bool
    ) -> chat.ChatCompletion | AsyncStream[ChatCompletionChunk]:
        # standalone function to make it easier to override
        if not self.tools:
            tool_choice: Literal['none', 'required', 'auto'] | None = None
        elif not self.allow_text_result:
            tool_choice = 'required'
        else:
            tool_choice = 'auto'

        groq_messages = [self._map_message(m) for m in messages]
        return await self.client.chat.completions.create(
            model=str(self.model_name),
            messages=groq_messages,
            temperature=0.0,
            n=1,
            parallel_tool_calls=True if self.tools else NOT_GIVEN,
            tools=self.tools or NOT_GIVEN,
            tool_choice=tool_choice or NOT_GIVEN,
            stream=stream,
        )

    @staticmethod
    def _process_response(response: chat.ChatCompletion) -> ModelAnyResponse:
        """Process a non-streamed response, and prepare a message to return."""
        timestamp = datetime.fromtimestamp(response.created, tz=timezone.utc)
        choice = response.choices[0]
        if choice.message.tool_calls is not None:
            return ModelStructuredResponse(
                [ToolCall.from_json(c.function.name, c.function.arguments, c.id) for c in choice.message.tool_calls],
                timestamp=timestamp,
            )
        else:
            assert choice.message.content is not None, choice
            return ModelTextResponse(choice.message.content, timestamp=timestamp)

    @staticmethod
    async def _process_streamed_response(response: AsyncStream[ChatCompletionChunk]) -> EitherStreamedResponse:
        """Process a streamed response, and prepare a streaming response to return."""
        try:
            first_chunk = await response.__anext__()
        except StopAsyncIteration as e:  # pragma: no cover
            raise UnexpectedModelBehavior('Streamed response ended without content or tool calls') from e
        timestamp = datetime.fromtimestamp(first_chunk.created, tz=timezone.utc)
        delta = first_chunk.choices[0].delta
        start_cost = _map_cost(first_chunk)

        # the first chunk may only contain `role`, so we iterate until we get either `tool_calls` or `content`
        while delta.tool_calls is None and delta.content is None:
            try:
                next_chunk = await response.__anext__()
            except StopAsyncIteration as e:
                raise UnexpectedModelBehavior('Streamed response ended without content or tool calls') from e
            delta = next_chunk.choices[0].delta
            start_cost += _map_cost(next_chunk)

        if delta.content is not None:
            return GroqStreamTextResponse(delta.content, response, timestamp, start_cost)
        else:
            assert delta.tool_calls is not None, f'Expected delta with tool_calls, got {delta}'
            return GroqStreamStructuredResponse(
                response,
                {c.index: c for c in delta.tool_calls},
                timestamp,
                start_cost,
            )

    @staticmethod
    def _map_message(message: Message) -> chat.ChatCompletionMessageParam:
        """Just maps a `pydantic_ai.Message` to a `groq.types.ChatCompletionMessageParam`."""
        if message.role == 'system':
            # SystemPrompt ->
            return chat.ChatCompletionSystemMessageParam(role='system', content=message.content)
        elif message.role == 'user':
            # UserPrompt ->
            return chat.ChatCompletionUserMessageParam(role='user', content=message.content)
        elif message.role == 'tool-return':
            # ToolReturn ->
            return chat.ChatCompletionToolMessageParam(
                role='tool',
                tool_call_id=_guard_tool_id(message),
                content=message.model_response_str(),
            )
        elif message.role == 'retry-prompt':
            # RetryPrompt ->
            if message.tool_name is None:
                return chat.ChatCompletionUserMessageParam(role='user', content=message.model_response())
            else:
                return chat.ChatCompletionToolMessageParam(
                    role='tool',
                    tool_call_id=_guard_tool_id(message),
                    content=message.model_response(),
                )
        elif message.role == 'model-text-response':
            # ModelTextResponse ->
            return chat.ChatCompletionAssistantMessageParam(role='assistant', content=message.content)
        elif message.role == 'model-structured-response':
            assert (
                message.role == 'model-structured-response'
            ), f'Expected role to be "llm-tool-calls", got {message.role}'
            # ModelStructuredResponse ->
            return chat.ChatCompletionAssistantMessageParam(
                role='assistant',
                tool_calls=[_map_tool_call(t) for t in message.calls],
            )
        else:
            assert_never(message)

GroqStreamTextResponse dataclass

Bases: StreamTextResponse

Implementation of StreamTextResponse for Groq models.

Source code in pydantic_ai_slim/pydantic_ai/models/groq.py
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
@dataclass
class GroqStreamTextResponse(StreamTextResponse):
    """Implementation of `StreamTextResponse` for Groq models."""

    _first: str | None
    _response: AsyncStream[ChatCompletionChunk]
    _timestamp: datetime
    _cost: result.Cost
    _buffer: list[str] = field(default_factory=list, init=False)

    async def __anext__(self) -> None:
        if self._first is not None:
            self._buffer.append(self._first)
            self._first = None
            return None

        chunk = await self._response.__anext__()
        self._cost = _map_cost(chunk)

        try:
            choice = chunk.choices[0]
        except IndexError:
            raise StopAsyncIteration()

        # we don't raise StopAsyncIteration on the last chunk because usage comes after this
        if choice.finish_reason is None:
            assert choice.delta.content is not None, f'Expected delta with content, invalid chunk: {chunk!r}'
        if choice.delta.content is not None:
            self._buffer.append(choice.delta.content)

    def get(self, *, final: bool = False) -> Iterable[str]:
        yield from self._buffer
        self._buffer.clear()

    def cost(self) -> Cost:
        return self._cost

    def timestamp(self) -> datetime:
        return self._timestamp

GroqStreamStructuredResponse dataclass

Bases: StreamStructuredResponse

Implementation of StreamStructuredResponse for Groq models.

Source code in pydantic_ai_slim/pydantic_ai/models/groq.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
@dataclass
class GroqStreamStructuredResponse(StreamStructuredResponse):
    """Implementation of `StreamStructuredResponse` for Groq models."""

    _response: AsyncStream[ChatCompletionChunk]
    _delta_tool_calls: dict[int, ChoiceDeltaToolCall]
    _timestamp: datetime
    _cost: result.Cost

    async def __anext__(self) -> None:
        chunk = await self._response.__anext__()
        self._cost = _map_cost(chunk)

        try:
            choice = chunk.choices[0]
        except IndexError:
            raise StopAsyncIteration()

        if choice.finish_reason is not None:
            raise StopAsyncIteration()

        assert choice.delta.content is None, f'Expected tool calls, got content instead, invalid chunk: {chunk!r}'

        for new in choice.delta.tool_calls or []:
            if current := self._delta_tool_calls.get(new.index):
                if current.function is None:
                    current.function = new.function
                elif new.function is not None:
                    current.function.name = _utils.add_optional(current.function.name, new.function.name)
                    current.function.arguments = _utils.add_optional(current.function.arguments, new.function.arguments)
            else:
                self._delta_tool_calls[new.index] = new

    def get(self, *, final: bool = False) -> ModelStructuredResponse:
        calls: list[ToolCall] = []
        for c in self._delta_tool_calls.values():
            if f := c.function:
                if f.name is not None and f.arguments is not None:
                    calls.append(ToolCall.from_json(f.name, f.arguments, c.id))

        return ModelStructuredResponse(calls, timestamp=self._timestamp)

    def cost(self) -> Cost:
        return self._cost

    def timestamp(self) -> datetime:
        return self._timestamp