Skip to content

pydantic_ai.models.openai

Setup

For details on how to set up authentication with this model, see model configuration for OpenAI.

OpenAIModel dataclass

Bases: Model

A model that uses the OpenAI API.

Internally, this uses the OpenAI Python client to interact with the API.

Apart from __init__, all methods are private or match those of the base class.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
@dataclass(init=False)
class OpenAIModel(Model):
    """A model that uses the OpenAI API.

    Internally, this uses the [OpenAI Python client](https://github.com/openai/openai-python) to interact with the API.

    Apart from `__init__`, all methods are private or match those of the base class.
    """

    model_name: ChatModel
    client: AsyncOpenAI = field(repr=False)

    def __init__(
        self,
        model_name: ChatModel,
        *,
        api_key: str | None = None,
        openai_client: AsyncOpenAI | None = None,
        http_client: AsyncHTTPClient | None = None,
    ):
        """Initialize an OpenAI model.

        Args:
            model_name: The name of the OpenAI model to use. List of model names available
                [here](https://github.com/openai/openai-python/blob/v1.54.3/src/openai/types/chat_model.py#L7)
                (Unfortunately, despite being ask to do so, OpenAI do not provide `.inv` files for their API).
            api_key: The API key to use for authentication, if not provided, the `OPENAI_API_KEY` environment variable
                will be used if available.
            openai_client: An existing
                [`AsyncOpenAI`](https://github.com/openai/openai-python?tab=readme-ov-file#async-usage)
                client to use, if provided, `api_key` and `http_client` must be `None`.
            http_client: An existing `httpx.AsyncClient` to use for making HTTP requests.
        """
        self.model_name: ChatModel = model_name
        if openai_client is not None:
            assert http_client is None, 'Cannot provide both `openai_client` and `http_client`'
            assert api_key is None, 'Cannot provide both `openai_client` and `api_key`'
            self.client = openai_client
        elif http_client is not None:
            self.client = AsyncOpenAI(api_key=api_key, http_client=http_client)
        else:
            self.client = AsyncOpenAI(api_key=api_key, http_client=cached_async_http_client())

    async def agent_model(
        self,
        function_tools: Mapping[str, AbstractToolDefinition],
        allow_text_result: bool,
        result_tools: Sequence[AbstractToolDefinition] | None,
    ) -> AgentModel:
        check_allow_model_requests()
        tools = [self._map_tool_definition(r) for r in function_tools.values()]
        if result_tools is not None:
            tools += [self._map_tool_definition(r) for r in result_tools]
        return OpenAIAgentModel(
            self.client,
            self.model_name,
            allow_text_result,
            tools,
        )

    def name(self) -> str:
        return f'openai:{self.model_name}'

    @staticmethod
    def _map_tool_definition(f: AbstractToolDefinition) -> chat.ChatCompletionToolParam:
        return {
            'type': 'function',
            'function': {
                'name': f.name,
                'description': f.description,
                'parameters': f.json_schema,
            },
        }

__init__

__init__(
    model_name: ChatModel,
    *,
    api_key: str | None = None,
    openai_client: AsyncOpenAI | None = None,
    http_client: AsyncClient | None = None
)

Initialize an OpenAI model.

Parameters:

Name Type Description Default
model_name ChatModel

The name of the OpenAI model to use. List of model names available here (Unfortunately, despite being ask to do so, OpenAI do not provide .inv files for their API).

required
api_key str | None

The API key to use for authentication, if not provided, the OPENAI_API_KEY environment variable will be used if available.

None
openai_client AsyncOpenAI | None

An existing AsyncOpenAI client to use, if provided, api_key and http_client must be None.

None
http_client AsyncClient | None

An existing httpx.AsyncClient to use for making HTTP requests.

None
Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def __init__(
    self,
    model_name: ChatModel,
    *,
    api_key: str | None = None,
    openai_client: AsyncOpenAI | None = None,
    http_client: AsyncHTTPClient | None = None,
):
    """Initialize an OpenAI model.

    Args:
        model_name: The name of the OpenAI model to use. List of model names available
            [here](https://github.com/openai/openai-python/blob/v1.54.3/src/openai/types/chat_model.py#L7)
            (Unfortunately, despite being ask to do so, OpenAI do not provide `.inv` files for their API).
        api_key: The API key to use for authentication, if not provided, the `OPENAI_API_KEY` environment variable
            will be used if available.
        openai_client: An existing
            [`AsyncOpenAI`](https://github.com/openai/openai-python?tab=readme-ov-file#async-usage)
            client to use, if provided, `api_key` and `http_client` must be `None`.
        http_client: An existing `httpx.AsyncClient` to use for making HTTP requests.
    """
    self.model_name: ChatModel = model_name
    if openai_client is not None:
        assert http_client is None, 'Cannot provide both `openai_client` and `http_client`'
        assert api_key is None, 'Cannot provide both `openai_client` and `api_key`'
        self.client = openai_client
    elif http_client is not None:
        self.client = AsyncOpenAI(api_key=api_key, http_client=http_client)
    else:
        self.client = AsyncOpenAI(api_key=api_key, http_client=cached_async_http_client())

OpenAIAgentModel dataclass

Bases: AgentModel

Implementation of AgentModel for OpenAI models.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
@dataclass
class OpenAIAgentModel(AgentModel):
    """Implementation of `AgentModel` for OpenAI models."""

    client: AsyncOpenAI
    model_name: ChatModel
    allow_text_result: bool
    tools: list[chat.ChatCompletionToolParam]

    async def request(self, messages: list[Message]) -> tuple[ModelAnyResponse, result.Cost]:
        response = await self._completions_create(messages, False)
        return self._process_response(response), _map_cost(response)

    @asynccontextmanager
    async def request_stream(self, messages: list[Message]) -> AsyncIterator[EitherStreamedResponse]:
        response = await self._completions_create(messages, True)
        async with response:
            yield await self._process_streamed_response(response)

    @overload
    async def _completions_create(
        self, messages: list[Message], stream: Literal[True]
    ) -> AsyncStream[ChatCompletionChunk]:
        pass

    @overload
    async def _completions_create(self, messages: list[Message], stream: Literal[False]) -> chat.ChatCompletion:
        pass

    async def _completions_create(
        self, messages: list[Message], stream: bool
    ) -> chat.ChatCompletion | AsyncStream[ChatCompletionChunk]:
        # standalone function to make it easier to override
        if not self.tools:
            tool_choice: Literal['none', 'required', 'auto'] | None = None
        elif not self.allow_text_result:
            tool_choice = 'required'
        else:
            tool_choice = 'auto'

        openai_messages = [self._map_message(m) for m in messages]
        return await self.client.chat.completions.create(
            model=self.model_name,
            messages=openai_messages,
            n=1,
            parallel_tool_calls=True if self.tools else NOT_GIVEN,
            tools=self.tools or NOT_GIVEN,
            tool_choice=tool_choice or NOT_GIVEN,
            stream=stream,
            stream_options={'include_usage': True} if stream else NOT_GIVEN,
        )

    @staticmethod
    def _process_response(response: chat.ChatCompletion) -> ModelAnyResponse:
        """Process a non-streamed response, and prepare a message to return."""
        timestamp = datetime.fromtimestamp(response.created, tz=timezone.utc)
        choice = response.choices[0]
        if choice.message.tool_calls is not None:
            return ModelStructuredResponse(
                [ToolCall.from_json(c.function.name, c.function.arguments, c.id) for c in choice.message.tool_calls],
                timestamp=timestamp,
            )
        else:
            assert choice.message.content is not None, choice
            return ModelTextResponse(choice.message.content, timestamp=timestamp)

    @staticmethod
    async def _process_streamed_response(response: AsyncStream[ChatCompletionChunk]) -> EitherStreamedResponse:
        """Process a streamed response, and prepare a streaming response to return."""
        try:
            first_chunk = await response.__anext__()
        except StopAsyncIteration as e:  # pragma: no cover
            raise UnexpectedModelBehavior('Streamed response ended without content or tool calls') from e
        timestamp = datetime.fromtimestamp(first_chunk.created, tz=timezone.utc)
        delta = first_chunk.choices[0].delta
        start_cost = _map_cost(first_chunk)

        # the first chunk may only contain `role`, so we iterate until we get either `tool_calls` or `content`
        while delta.tool_calls is None and delta.content is None:
            try:
                next_chunk = await response.__anext__()
            except StopAsyncIteration as e:
                raise UnexpectedModelBehavior('Streamed response ended without content or tool calls') from e
            delta = next_chunk.choices[0].delta
            start_cost += _map_cost(next_chunk)

        if delta.content is not None:
            return OpenAIStreamTextResponse(delta.content, response, timestamp, start_cost)
        else:
            assert delta.tool_calls is not None, f'Expected delta with tool_calls, got {delta}'
            return OpenAIStreamStructuredResponse(
                response,
                {c.index: c for c in delta.tool_calls},
                timestamp,
                start_cost,
            )

    @staticmethod
    def _map_message(message: Message) -> chat.ChatCompletionMessageParam:
        """Just maps a `pydantic_ai.Message` to a `openai.types.ChatCompletionMessageParam`."""
        if message.role == 'system':
            # SystemPrompt ->
            return chat.ChatCompletionSystemMessageParam(role='system', content=message.content)
        elif message.role == 'user':
            # UserPrompt ->
            return chat.ChatCompletionUserMessageParam(role='user', content=message.content)
        elif message.role == 'tool-return':
            # ToolReturn ->
            return chat.ChatCompletionToolMessageParam(
                role='tool',
                tool_call_id=_guard_tool_id(message),
                content=message.model_response_str(),
            )
        elif message.role == 'retry-prompt':
            # RetryPrompt ->
            if message.tool_name is None:
                return chat.ChatCompletionUserMessageParam(role='user', content=message.model_response())
            else:
                return chat.ChatCompletionToolMessageParam(
                    role='tool',
                    tool_call_id=_guard_tool_id(message),
                    content=message.model_response(),
                )
        elif message.role == 'model-text-response':
            # ModelTextResponse ->
            return chat.ChatCompletionAssistantMessageParam(role='assistant', content=message.content)
        elif message.role == 'model-structured-response':
            assert (
                message.role == 'model-structured-response'
            ), f'Expected role to be "llm-tool-calls", got {message.role}'
            # ModelStructuredResponse ->
            return chat.ChatCompletionAssistantMessageParam(
                role='assistant',
                tool_calls=[_map_tool_call(t) for t in message.calls],
            )
        else:
            assert_never(message)

OpenAIStreamTextResponse dataclass

Bases: StreamTextResponse

Implementation of StreamTextResponse for OpenAI models.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
@dataclass
class OpenAIStreamTextResponse(StreamTextResponse):
    """Implementation of `StreamTextResponse` for OpenAI models."""

    _first: str | None
    _response: AsyncStream[ChatCompletionChunk]
    _timestamp: datetime
    _cost: result.Cost
    _buffer: list[str] = field(default_factory=list, init=False)

    async def __anext__(self) -> None:
        if self._first is not None:
            self._buffer.append(self._first)
            self._first = None
            return None

        chunk = await self._response.__anext__()
        self._cost += _map_cost(chunk)
        try:
            choice = chunk.choices[0]
        except IndexError:
            raise StopAsyncIteration()

        # we don't raise StopAsyncIteration on the last chunk because usage comes after this
        if choice.finish_reason is None:
            assert choice.delta.content is not None, f'Expected delta with content, invalid chunk: {chunk!r}'
        if choice.delta.content is not None:
            self._buffer.append(choice.delta.content)

    def get(self, *, final: bool = False) -> Iterable[str]:
        yield from self._buffer
        self._buffer.clear()

    def cost(self) -> Cost:
        return self._cost

    def timestamp(self) -> datetime:
        return self._timestamp

OpenAIStreamStructuredResponse dataclass

Bases: StreamStructuredResponse

Implementation of StreamStructuredResponse for OpenAI models.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
@dataclass
class OpenAIStreamStructuredResponse(StreamStructuredResponse):
    """Implementation of `StreamStructuredResponse` for OpenAI models."""

    _response: AsyncStream[ChatCompletionChunk]
    _delta_tool_calls: dict[int, ChoiceDeltaToolCall]
    _timestamp: datetime
    _cost: result.Cost

    async def __anext__(self) -> None:
        chunk = await self._response.__anext__()
        self._cost += _map_cost(chunk)
        try:
            choice = chunk.choices[0]
        except IndexError:
            raise StopAsyncIteration()

        if choice.finish_reason is not None:
            raise StopAsyncIteration()

        assert choice.delta.content is None, f'Expected tool calls, got content instead, invalid chunk: {chunk!r}'

        for new in choice.delta.tool_calls or []:
            if current := self._delta_tool_calls.get(new.index):
                if current.function is None:
                    current.function = new.function
                elif new.function is not None:
                    current.function.name = _utils.add_optional(current.function.name, new.function.name)
                    current.function.arguments = _utils.add_optional(current.function.arguments, new.function.arguments)
            else:
                self._delta_tool_calls[new.index] = new

    def get(self, *, final: bool = False) -> ModelStructuredResponse:
        calls: list[ToolCall] = []
        for c in self._delta_tool_calls.values():
            if f := c.function:
                if f.name is not None and f.arguments is not None:
                    calls.append(ToolCall.from_json(f.name, f.arguments, c.id))

        return ModelStructuredResponse(calls, timestamp=self._timestamp)

    def cost(self) -> Cost:
        return self._cost

    def timestamp(self) -> datetime:
        return self._timestamp