pydantic_ai.output
OutputDataT
module-attribute
OutputDataT = TypeVar(
"OutputDataT", default=str, covariant=True
)
Covariant type variable for the output data type of a run.
ToolOutput
dataclass
Bases: Generic[OutputDataT]
Marker class to use a tool for output and optionally customize the tool.
Example:
from pydantic import BaseModel
from pydantic_ai import Agent, ToolOutput
class Fruit(BaseModel):
name: str
color: str
class Vehicle(BaseModel):
name: str
wheels: int
agent = Agent(
'openai:gpt-4o',
output_type=[
ToolOutput(Fruit, name='return_fruit'),
ToolOutput(Vehicle, name='return_vehicle'),
],
)
result = agent.run_sync('What is a banana?')
print(repr(result.output))
#> Fruit(name='banana', color='yellow')
Source code in pydantic_ai_slim/pydantic_ai/output.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
output
instance-attribute
output: OutputTypeOrFunction[OutputDataT] = type_
An output type or function.
name
instance-attribute
name: str | None = name
The name of the tool that will be passed to the model. If not specified and only one output is provided, final_result
will be used. If multiple outputs are provided, the name of the output type or function will be added to the tool name.
description
instance-attribute
description: str | None = description
The description of the tool that will be passed to the model. If not specified, the docstring of the output type or function will be used.
max_retries
instance-attribute
max_retries: int | None = max_retries
The maximum number of retries for the tool.
NativeOutput
dataclass
Bases: Generic[OutputDataT]
Marker class to use the model's native structured outputs functionality for outputs and optionally customize the name and description.
Example:
from tool_output import Fruit, Vehicle
from pydantic_ai import Agent, NativeOutput
agent = Agent(
'openai:gpt-4o',
output_type=NativeOutput(
[Fruit, Vehicle],
name='Fruit or vehicle',
description='Return a fruit or vehicle.'
),
)
result = agent.run_sync('What is a Ford Explorer?')
print(repr(result.output))
#> Vehicle(name='Ford Explorer', wheels=4)
Source code in pydantic_ai_slim/pydantic_ai/output.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
outputs
instance-attribute
outputs: (
OutputTypeOrFunction[OutputDataT]
| Sequence[OutputTypeOrFunction[OutputDataT]]
) = outputs
The output types or functions.
name
instance-attribute
name: str | None = name
The name of the structured output that will be passed to the model. If not specified and only one output is provided, the name of the output type or function will be used.
description
instance-attribute
description: str | None = description
The description of the structured output that will be passed to the model. If not specified and only one output is provided, the docstring of the output type or function will be used.
PromptedOutput
dataclass
Bases: Generic[OutputDataT]
Marker class to use a prompt to tell the model what to output and optionally customize the prompt.
Example:
from pydantic import BaseModel
from tool_output import Vehicle
from pydantic_ai import Agent, PromptedOutput
class Device(BaseModel):
name: str
kind: str
agent = Agent(
'openai:gpt-4o',
output_type=PromptedOutput(
[Vehicle, Device],
name='Vehicle or device',
description='Return a vehicle or device.'
),
)
result = agent.run_sync('What is a MacBook?')
print(repr(result.output))
#> Device(name='MacBook', kind='laptop')
agent = Agent(
'openai:gpt-4o',
output_type=PromptedOutput(
[Vehicle, Device],
template='Gimme some JSON: {schema}'
),
)
result = agent.run_sync('What is a Ford Explorer?')
print(repr(result.output))
#> Vehicle(name='Ford Explorer', wheels=4)
Source code in pydantic_ai_slim/pydantic_ai/output.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
outputs
instance-attribute
outputs: (
OutputTypeOrFunction[OutputDataT]
| Sequence[OutputTypeOrFunction[OutputDataT]]
) = outputs
The output types or functions.
name
instance-attribute
name: str | None = name
The name of the structured output that will be passed to the model. If not specified and only one output is provided, the name of the output type or function will be used.
description
instance-attribute
description: str | None = description
The description that will be passed to the model. If not specified and only one output is provided, the docstring of the output type or function will be used.
template
instance-attribute
template: str | None = template
Template for the prompt passed to the model. The '{schema}' placeholder will be replaced with the output JSON schema. If not specified, the default template specified on the model's profile will be used.
TextOutput
dataclass
Bases: Generic[OutputDataT]
Marker class to use text output for an output function taking a string argument.
Example:
from pydantic_ai import Agent, TextOutput
def split_into_words(text: str) -> list[str]:
return text.split()
agent = Agent(
'openai:gpt-4o',
output_type=TextOutput(split_into_words),
)
result = agent.run_sync('Who was Albert Einstein?')
print(result.output)
#> ['Albert', 'Einstein', 'was', 'a', 'German-born', 'theoretical', 'physicist.']
Source code in pydantic_ai_slim/pydantic_ai/output.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
|
output_function
instance-attribute
output_function: TextOutputFunc[OutputDataT]
The function that will be called to process the model's plain text output. The function must take a single string argument.