pydantic_evals.dataset
Dataset management for pydantic evals.
This module provides functionality for creating, loading, saving, and evaluating datasets of test cases. Each case must have inputs, and can optionally have a name, expected output, metadata, and case-specific evaluators.
Datasets can be loaded from and saved to YAML or JSON files, and can be evaluated against a task function to produce an evaluation report.
Case
dataclass
Bases: Generic[InputsT, OutputT, MetadataT]
A single row of a Dataset
.
Each case represents a single test scenario with inputs to test. A case may optionally specify a name, expected outputs to compare against, and arbitrary metadata.
Cases can also have their own specific evaluators which are run in addition to dataset-level evaluators.
Example:
from pydantic_evals import Case
case = Case(
name='Simple addition',
inputs={'a': 1, 'b': 2},
expected_output=3,
metadata={'description': 'Tests basic addition'},
)
Source code in pydantic_evals/pydantic_evals/dataset.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
__init__
__init__(
*,
name: str | None = None,
inputs: InputsT,
metadata: MetadataT | None = None,
expected_output: OutputT | None = None,
evaluators: tuple[
Evaluator[InputsT, OutputT, MetadataT], ...
] = ()
)
Initialize a new test case.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str | None
|
Optional name for the case. If not provided, a generic name will be assigned when added to a dataset. |
None
|
inputs
|
InputsT
|
The inputs to the task being evaluated. |
required |
metadata
|
MetadataT | None
|
Optional metadata for the case, which can be used by evaluators. |
None
|
expected_output
|
OutputT | None
|
Optional expected output of the task, used for comparison in evaluators. |
None
|
evaluators
|
tuple[Evaluator[InputsT, OutputT, MetadataT], ...]
|
Tuple of evaluators specific to this case. These are in addition to any dataset-level evaluators. |
()
|
Source code in pydantic_evals/pydantic_evals/dataset.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
name
instance-attribute
name: str | None = name
Name of the case. This is used to identify the case in the report and can be used to filter cases.
inputs
instance-attribute
inputs: InputsT = inputs
Inputs to the task. This is the input to the task that will be evaluated.
metadata
class-attribute
instance-attribute
metadata: MetadataT | None = metadata
Metadata to be used in the evaluation.
This can be used to provide additional information about the case to the evaluators.
expected_output
class-attribute
instance-attribute
expected_output: OutputT | None = expected_output
Expected output of the task. This is the expected output of the task that will be evaluated.
Dataset
Bases: BaseModel
, Generic[InputsT, OutputT, MetadataT]
A dataset of test cases.
Datasets allow you to organize a collection of test cases and evaluate them against a task function. They can be loaded from and saved to YAML or JSON files, and can have dataset-level evaluators that apply to all cases.
Example:
# Create a dataset with two test cases
from dataclasses import dataclass
from pydantic_evals import Case, Dataset
from pydantic_evals.evaluators import Evaluator, EvaluatorContext
@dataclass
class ExactMatch(Evaluator):
def evaluate(self, ctx: EvaluatorContext) -> bool:
return ctx.output == ctx.expected_output
dataset = Dataset(
cases=[
Case(name='test1', inputs={'text': 'Hello'}, expected_output='HELLO'),
Case(name='test2', inputs={'text': 'World'}, expected_output='WORLD'),
],
evaluators=[ExactMatch()],
)
# Evaluate the dataset against a task function
async def uppercase(inputs: dict) -> str:
return inputs['text'].upper()
async def main():
report = await dataset.evaluate(uppercase)
report.print()
'''
Evaluation Summary: uppercase
┏━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━┓
┃ Case ID ┃ Assertions ┃ Duration ┃
┡━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━┩
│ test1 │ ✔ │ 10ms │
├──────────┼────────────┼──────────┤
│ test2 │ ✔ │ 10ms │
├──────────┼────────────┼──────────┤
│ Averages │ 100.0% ✔ │ 10ms │
└──────────┴────────────┴──────────┘
'''
Source code in pydantic_evals/pydantic_evals/dataset.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
|
cases
instance-attribute
List of test cases in the dataset.
evaluators
class-attribute
instance-attribute
List of evaluators to be used on all cases in the dataset.
__init__
__init__(
*,
cases: Sequence[Case[InputsT, OutputT, MetadataT]],
evaluators: Sequence[
Evaluator[InputsT, OutputT, MetadataT]
] = ()
)
Initialize a new dataset with test cases and optional evaluators.
Parameters:
Source code in pydantic_evals/pydantic_evals/dataset.py
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
evaluate
async
evaluate(
task: Callable[[InputsT], Awaitable[OutputT]],
name: str | None = None,
max_concurrency: int | None = None,
) -> EvaluationReport
Evaluates the test cases in the dataset using the given task.
This method runs the task on each case in the dataset, applies evaluators,
and collects results into a report. Cases are run concurrently, limited by max_concurrency
if specified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task
|
Callable[[InputsT], Awaitable[OutputT]]
|
The task to evaluate. This should be a callable that takes the inputs of the case and returns the output. |
required |
name
|
str | None
|
The name of the task being evaluated, this is used to identify the task in the report. If omitted, the name of the task function will be used. |
None
|
max_concurrency
|
int | None
|
The maximum number of concurrent evaluations of the task to allow. If None, all cases will be evaluated concurrently. |
None
|
Returns:
Type | Description |
---|---|
EvaluationReport
|
A report containing the results of the evaluation. |
Source code in pydantic_evals/pydantic_evals/dataset.py
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
|
evaluate_sync
evaluate_sync(
task: Callable[[InputsT], Awaitable[OutputT]],
name: str | None = None,
max_concurrency: int | None = None,
) -> EvaluationReport
Evaluates the test cases in the dataset using the given task.
This is a synchronous wrapper around evaluate
provided for convenience.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task
|
Callable[[InputsT], Awaitable[OutputT]]
|
The task to evaluate. This should be a callable that takes the inputs of the case and returns the output. |
required |
name
|
str | None
|
The name of the task being evaluated, this is used to identify the task in the report. If omitted, the name of the task function will be used. |
None
|
max_concurrency
|
int | None
|
The maximum number of concurrent evaluations of the task to allow. If None, all cases will be evaluated concurrently. |
None
|
Returns:
Type | Description |
---|---|
EvaluationReport
|
A report containing the results of the evaluation. |
Source code in pydantic_evals/pydantic_evals/dataset.py
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
|
add_case
add_case(
*,
name: str | None = None,
inputs: InputsT,
metadata: MetadataT | None = None,
expected_output: OutputT | None = None,
evaluators: tuple[
Evaluator[InputsT, OutputT, MetadataT], ...
] = ()
) -> None
Adds a case to the dataset.
This is a convenience method for creating a Case
and adding it to the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str | None
|
Optional name for the case. If not provided, a generic name will be assigned. |
None
|
inputs
|
InputsT
|
The inputs to the task being evaluated. |
required |
metadata
|
MetadataT | None
|
Optional metadata for the case, which can be used by evaluators. |
None
|
expected_output
|
OutputT | None
|
The expected output of the task, used for comparison in evaluators. |
None
|
evaluators
|
tuple[Evaluator[InputsT, OutputT, MetadataT], ...]
|
Tuple of evaluators specific to this case, in addition to dataset-level evaluators. |
()
|
Source code in pydantic_evals/pydantic_evals/dataset.py
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
|
add_evaluator
add_evaluator(
evaluator: Evaluator[InputsT, OutputT, MetadataT],
specific_case: str | None = None,
) -> None
Adds an evaluator to the dataset or a specific case.
Parameters:
Raises:
Type | Description |
---|---|
ValueError
|
If |
Source code in pydantic_evals/pydantic_evals/dataset.py
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
|
from_file
classmethod
from_file(
path: Path | str,
fmt: Literal["yaml", "json"] | None = None,
custom_evaluator_types: Sequence[
type[Evaluator[InputsT, OutputT, MetadataT]]
] = (),
) -> Self
Load a dataset from a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Path | str
|
Path to the file to load. |
required |
fmt
|
Literal['yaml', 'json'] | None
|
Format of the file. If None, the format will be inferred from the file extension. Must be either 'yaml' or 'json'. |
None
|
custom_evaluator_types
|
Sequence[type[Evaluator[InputsT, OutputT, MetadataT]]]
|
Custom evaluator classes to use when deserializing the dataset. These are additional evaluators beyond the default ones. |
()
|
Returns:
Type | Description |
---|---|
Self
|
A new Dataset instance loaded from the file. |
Raises:
Type | Description |
---|---|
ValidationError
|
If the file cannot be parsed as a valid dataset. |
ValueError
|
If the format cannot be inferred from the file extension. |
Source code in pydantic_evals/pydantic_evals/dataset.py
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
|
from_text
classmethod
from_text(
contents: str,
fmt: Literal["yaml", "json"] = "yaml",
custom_evaluator_types: Sequence[
type[Evaluator[InputsT, OutputT, MetadataT]]
] = (),
) -> Self
Load a dataset from a string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
contents
|
str
|
The string content to parse. |
required |
fmt
|
Literal['yaml', 'json']
|
Format of the content. Must be either 'yaml' or 'json'. |
'yaml'
|
custom_evaluator_types
|
Sequence[type[Evaluator[InputsT, OutputT, MetadataT]]]
|
Custom evaluator classes to use when deserializing the dataset. These are additional evaluators beyond the default ones. |
()
|
Returns:
Type | Description |
---|---|
Self
|
A new Dataset instance parsed from the string. |
Raises:
Type | Description |
---|---|
ValidationError
|
If the content cannot be parsed as a valid dataset. |
Source code in pydantic_evals/pydantic_evals/dataset.py
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
|
from_dict
classmethod
from_dict(
data: dict[str, Any],
custom_evaluator_types: Sequence[
type[Evaluator[InputsT, OutputT, MetadataT]]
] = (),
) -> Self
Load a dataset from a dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
dict[str, Any]
|
Dictionary representation of the dataset. |
required |
custom_evaluator_types
|
Sequence[type[Evaluator[InputsT, OutputT, MetadataT]]]
|
Custom evaluator classes to use when deserializing the dataset. These are additional evaluators beyond the default ones. |
()
|
Returns:
Type | Description |
---|---|
Self
|
A new Dataset instance created from the dictionary. |
Raises:
Type | Description |
---|---|
ValidationError
|
If the dictionary cannot be converted to a valid dataset. |
Source code in pydantic_evals/pydantic_evals/dataset.py
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
|
to_file
to_file(
path: Path | str,
fmt: Literal["yaml", "json"] | None = None,
schema_path: (
Path | str | None
) = DEFAULT_SCHEMA_PATH_TEMPLATE,
custom_evaluator_types: Sequence[
type[Evaluator[InputsT, OutputT, MetadataT]]
] = (),
)
Save the dataset to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Path | str
|
Path to save the dataset to. |
required |
fmt
|
Literal['yaml', 'json'] | None
|
Format to use. If None, the format will be inferred from the file extension. Must be either 'yaml' or 'json'. |
None
|
schema_path
|
Path | str | None
|
Path to save the JSON schema to. If None, no schema will be saved. Can be a string template with {stem} which will be replaced with the dataset filename stem. |
DEFAULT_SCHEMA_PATH_TEMPLATE
|
custom_evaluator_types
|
Sequence[type[Evaluator[InputsT, OutputT, MetadataT]]]
|
Custom evaluator classes to include in the schema. |
()
|
Source code in pydantic_evals/pydantic_evals/dataset.py
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
|
model_json_schema_with_evaluators
classmethod
model_json_schema_with_evaluators(
custom_evaluator_types: Sequence[
type[Evaluator[InputsT, OutputT, MetadataT]]
] = (),
) -> dict[str, Any]
Generate a JSON schema for this dataset type, including evaluator details.
This is useful for generating a schema that can be used to validate YAML-format dataset files.
Parameters:
Returns:
Source code in pydantic_evals/pydantic_evals/dataset.py
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
set_eval_attribute
Set an attribute on the current task run.
Parameters:
Source code in pydantic_evals/pydantic_evals/dataset.py
973 974 975 976 977 978 979 980 981 982 |
|
increment_eval_metric
Increment a metric on the current task run.
Parameters:
Source code in pydantic_evals/pydantic_evals/dataset.py
985 986 987 988 989 990 991 992 993 994 |
|