pydantic_evals.generation
Utilities for generating example datasets for pydantic_evals.
This module provides functions for generating sample datasets for testing and examples, using LLMs to create realistic test data with proper structure.
generate_dataset
async
generate_dataset(
*,
dataset_type: type[
Dataset[InputsT, OutputT, MetadataT]
],
path: Path | str | None = None,
custom_evaluator_types: Sequence[
type[Evaluator[InputsT, OutputT, MetadataT]]
] = (),
model: Model | KnownModelName = "openai:gpt-4o",
n_examples: int = 3,
extra_instructions: str | None = None
) -> Dataset[InputsT, OutputT, MetadataT]
Use an LLM to generate a dataset of test cases, each consisting of input, expected output, and metadata.
This function creates a properly structured dataset with the specified input, output, and metadata types. It uses an LLM to attempt to generate realistic test cases that conform to the types' schemas.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Path | str | None
|
Optional path to save the generated dataset. If provided, the dataset will be saved to this location. |
None
|
dataset_type
|
type[Dataset[InputsT, OutputT, MetadataT]]
|
The type of dataset to generate, with the desired input, output, and metadata types. |
required |
custom_evaluator_types
|
Sequence[type[Evaluator[InputsT, OutputT, MetadataT]]]
|
Optional sequence of custom evaluator classes to include in the schema. |
()
|
model
|
Model | KnownModelName
|
The PydanticAI model to use for generation. Defaults to 'gpt-4o'. |
'openai:gpt-4o'
|
n_examples
|
int
|
Number of examples to generate. Defaults to 3. |
3
|
extra_instructions
|
str | None
|
Optional additional instructions to provide to the LLM. |
None
|
Returns:
Type | Description |
---|---|
Dataset[InputsT, OutputT, MetadataT]
|
A properly structured Dataset object with generated test cases. |
Raises:
Type | Description |
---|---|
ValidationError
|
If the LLM's response cannot be parsed as a valid dataset. |
Source code in pydantic_evals/pydantic_evals/generation.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|