Skip to content

pydantic_graph.beta

The next version of the pydantic-graph framework with enhanced graph execution capabilities.

This module provides a parallel control flow graph execution framework with support for: - 'Step' nodes for task execution - 'Decision' nodes for conditional branching - 'Fork' nodes for parallel execution coordination - 'Join' nodes and 'Reducer's for re-joining parallel executions - Mermaid diagram generation for graph visualization

Graph dataclass

Bases: Generic[StateT, DepsT, InputT, OutputT]

A complete graph definition ready for execution.

The Graph class represents a complete workflow graph with typed inputs, outputs, state, and dependencies. It contains all nodes, edges, and metadata needed for execution.

Type Parameters

StateT: The type of the graph state DepsT: The type of the dependencies InputT: The type of the input data OutputT: The type of the output data

Source code in pydantic_graph/pydantic_graph/beta/graph.py
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
@dataclass(repr=False)
class Graph(Generic[StateT, DepsT, InputT, OutputT]):
    """A complete graph definition ready for execution.

    The Graph class represents a complete workflow graph with typed inputs,
    outputs, state, and dependencies. It contains all nodes, edges, and
    metadata needed for execution.

    Type Parameters:
        StateT: The type of the graph state
        DepsT: The type of the dependencies
        InputT: The type of the input data
        OutputT: The type of the output data
    """

    name: str | None
    """Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method."""

    state_type: type[StateT]
    """The type of the graph state."""

    deps_type: type[DepsT]
    """The type of the dependencies."""

    input_type: type[InputT]
    """The type of the input data."""

    output_type: type[OutputT]
    """The type of the output data."""

    auto_instrument: bool
    """Whether to automatically create instrumentation spans."""

    nodes: dict[NodeID, AnyNode]
    """All nodes in the graph indexed by their ID."""

    edges_by_source: dict[NodeID, list[Path]]
    """Outgoing paths from each source node."""

    parent_forks: dict[JoinID, ParentFork[NodeID]]
    """Parent fork information for each join node."""

    def get_parent_fork(self, join_id: JoinID) -> ParentFork[NodeID]:
        """Get the parent fork information for a join node.

        Args:
            join_id: The ID of the join node

        Returns:
            The parent fork information for the join

        Raises:
            RuntimeError: If the join ID is not found or has no parent fork
        """
        result = self.parent_forks.get(join_id)
        if result is None:
            raise RuntimeError(f'Node {join_id} is not a join node or did not have a dominating fork (this is a bug)')
        return result

    async def run(
        self,
        *,
        state: StateT = None,
        deps: DepsT = None,
        inputs: InputT = None,
        span: AbstractContextManager[AbstractSpan] | None = None,
        infer_name: bool = True,
    ) -> OutputT:
        """Execute the graph and return the final output.

        This is the main entry point for graph execution. It runs the graph
        to completion and returns the final output value.

        Args:
            state: The graph state instance
            deps: The dependencies instance
            inputs: The input data for the graph
            span: Optional span for tracing/instrumentation
            infer_name: Whether to infer the graph name from the calling frame.

        Returns:
            The final output from the graph execution
        """
        if infer_name and self.name is None:
            inferred_name = infer_obj_name(self, depth=2)
            if inferred_name is not None:  # pragma: no branch
                self.name = inferred_name

        async with self.iter(state=state, deps=deps, inputs=inputs, span=span, infer_name=False) as graph_run:
            # Note: This would probably be better using `async for _ in graph_run`, but this tests the `next` method,
            # which I'm less confident will be implemented correctly if not used on the critical path. We can change it
            # once we have tests, etc.
            event: Any = None
            while True:
                try:
                    event = await graph_run.next(event)
                except StopAsyncIteration:
                    assert isinstance(event, EndMarker), 'Graph run should end with an EndMarker.'
                    return cast(EndMarker[OutputT], event).value

    @asynccontextmanager
    async def iter(
        self,
        *,
        state: StateT = None,
        deps: DepsT = None,
        inputs: InputT = None,
        span: AbstractContextManager[AbstractSpan] | None = None,
        infer_name: bool = True,
    ) -> AsyncIterator[GraphRun[StateT, DepsT, OutputT]]:
        """Create an iterator for step-by-step graph execution.

        This method allows for more fine-grained control over graph execution,
        enabling inspection of intermediate states and results.

        Args:
            state: The graph state instance
            deps: The dependencies instance
            inputs: The input data for the graph
            span: Optional span for tracing/instrumentation
            infer_name: Whether to infer the graph name from the calling frame.

        Yields:
            A GraphRun instance that can be iterated for step-by-step execution
        """
        if infer_name and self.name is None:
            inferred_name = infer_obj_name(self, depth=3)  # depth=3 because asynccontextmanager adds one
            if inferred_name is not None:  # pragma: no branch
                self.name = inferred_name

        with ExitStack() as stack:
            entered_span: AbstractSpan | None = None
            if span is None:
                if self.auto_instrument:
                    entered_span = stack.enter_context(logfire_span('run graph {graph.name}', graph=self))
            else:
                entered_span = stack.enter_context(span)
            traceparent = None if entered_span is None else get_traceparent(entered_span)
            async with GraphRun[StateT, DepsT, OutputT](
                graph=self,
                state=state,
                deps=deps,
                inputs=inputs,
                traceparent=traceparent,
            ) as graph_run:
                yield graph_run

    def render(self, *, title: str | None = None, direction: StateDiagramDirection | None = None) -> str:
        """Render the graph as a Mermaid diagram string.

        Args:
            title: Optional title for the diagram
            direction: Optional direction for the diagram layout

        Returns:
            A string containing the Mermaid diagram representation
        """
        from pydantic_graph.beta.mermaid import build_mermaid_graph

        return build_mermaid_graph(self.nodes, self.edges_by_source).render(title=title, direction=direction)

    def __repr__(self) -> str:
        super_repr = super().__repr__()  # include class and memory address
        # Insert the result of calling `__str__` before the final '>' in the repr
        return f'{super_repr[:-1]}\n{self}\n{super_repr[-1]}'

    def __str__(self) -> str:
        """Return a Mermaid diagram representation of the graph.

        Returns:
            A string containing the Mermaid diagram of the graph
        """
        return self.render()

name instance-attribute

name: str | None

Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method.

state_type instance-attribute

state_type: type[StateT]

The type of the graph state.

deps_type instance-attribute

deps_type: type[DepsT]

The type of the dependencies.

input_type instance-attribute

input_type: type[InputT]

The type of the input data.

output_type instance-attribute

output_type: type[OutputT]

The type of the output data.

auto_instrument instance-attribute

auto_instrument: bool

Whether to automatically create instrumentation spans.

nodes instance-attribute

nodes: dict[NodeID, AnyNode]

All nodes in the graph indexed by their ID.

edges_by_source instance-attribute

edges_by_source: dict[NodeID, list[Path]]

Outgoing paths from each source node.

parent_forks instance-attribute

parent_forks: dict[JoinID, ParentFork[NodeID]]

Parent fork information for each join node.

get_parent_fork

get_parent_fork(join_id: JoinID) -> ParentFork[NodeID]

Get the parent fork information for a join node.

Parameters:

Name Type Description Default
join_id JoinID

The ID of the join node

required

Returns:

Type Description
ParentFork[NodeID]

The parent fork information for the join

Raises:

Type Description
RuntimeError

If the join ID is not found or has no parent fork

Source code in pydantic_graph/pydantic_graph/beta/graph.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def get_parent_fork(self, join_id: JoinID) -> ParentFork[NodeID]:
    """Get the parent fork information for a join node.

    Args:
        join_id: The ID of the join node

    Returns:
        The parent fork information for the join

    Raises:
        RuntimeError: If the join ID is not found or has no parent fork
    """
    result = self.parent_forks.get(join_id)
    if result is None:
        raise RuntimeError(f'Node {join_id} is not a join node or did not have a dominating fork (this is a bug)')
    return result

run async

run(
    *,
    state: StateT = None,
    deps: DepsT = None,
    inputs: InputT = None,
    span: (
        AbstractContextManager[AbstractSpan] | None
    ) = None,
    infer_name: bool = True
) -> OutputT

Execute the graph and return the final output.

This is the main entry point for graph execution. It runs the graph to completion and returns the final output value.

Parameters:

Name Type Description Default
state StateT

The graph state instance

None
deps DepsT

The dependencies instance

None
inputs InputT

The input data for the graph

None
span AbstractContextManager[AbstractSpan] | None

Optional span for tracing/instrumentation

None
infer_name bool

Whether to infer the graph name from the calling frame.

True

Returns:

Type Description
OutputT

The final output from the graph execution

Source code in pydantic_graph/pydantic_graph/beta/graph.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
async def run(
    self,
    *,
    state: StateT = None,
    deps: DepsT = None,
    inputs: InputT = None,
    span: AbstractContextManager[AbstractSpan] | None = None,
    infer_name: bool = True,
) -> OutputT:
    """Execute the graph and return the final output.

    This is the main entry point for graph execution. It runs the graph
    to completion and returns the final output value.

    Args:
        state: The graph state instance
        deps: The dependencies instance
        inputs: The input data for the graph
        span: Optional span for tracing/instrumentation
        infer_name: Whether to infer the graph name from the calling frame.

    Returns:
        The final output from the graph execution
    """
    if infer_name and self.name is None:
        inferred_name = infer_obj_name(self, depth=2)
        if inferred_name is not None:  # pragma: no branch
            self.name = inferred_name

    async with self.iter(state=state, deps=deps, inputs=inputs, span=span, infer_name=False) as graph_run:
        # Note: This would probably be better using `async for _ in graph_run`, but this tests the `next` method,
        # which I'm less confident will be implemented correctly if not used on the critical path. We can change it
        # once we have tests, etc.
        event: Any = None
        while True:
            try:
                event = await graph_run.next(event)
            except StopAsyncIteration:
                assert isinstance(event, EndMarker), 'Graph run should end with an EndMarker.'
                return cast(EndMarker[OutputT], event).value

iter async

iter(
    *,
    state: StateT = None,
    deps: DepsT = None,
    inputs: InputT = None,
    span: (
        AbstractContextManager[AbstractSpan] | None
    ) = None,
    infer_name: bool = True
) -> AsyncIterator[GraphRun[StateT, DepsT, OutputT]]

Create an iterator for step-by-step graph execution.

This method allows for more fine-grained control over graph execution, enabling inspection of intermediate states and results.

Parameters:

Name Type Description Default
state StateT

The graph state instance

None
deps DepsT

The dependencies instance

None
inputs InputT

The input data for the graph

None
span AbstractContextManager[AbstractSpan] | None

Optional span for tracing/instrumentation

None
infer_name bool

Whether to infer the graph name from the calling frame.

True

Yields:

Type Description
AsyncIterator[GraphRun[StateT, DepsT, OutputT]]

A GraphRun instance that can be iterated for step-by-step execution

Source code in pydantic_graph/pydantic_graph/beta/graph.py
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
@asynccontextmanager
async def iter(
    self,
    *,
    state: StateT = None,
    deps: DepsT = None,
    inputs: InputT = None,
    span: AbstractContextManager[AbstractSpan] | None = None,
    infer_name: bool = True,
) -> AsyncIterator[GraphRun[StateT, DepsT, OutputT]]:
    """Create an iterator for step-by-step graph execution.

    This method allows for more fine-grained control over graph execution,
    enabling inspection of intermediate states and results.

    Args:
        state: The graph state instance
        deps: The dependencies instance
        inputs: The input data for the graph
        span: Optional span for tracing/instrumentation
        infer_name: Whether to infer the graph name from the calling frame.

    Yields:
        A GraphRun instance that can be iterated for step-by-step execution
    """
    if infer_name and self.name is None:
        inferred_name = infer_obj_name(self, depth=3)  # depth=3 because asynccontextmanager adds one
        if inferred_name is not None:  # pragma: no branch
            self.name = inferred_name

    with ExitStack() as stack:
        entered_span: AbstractSpan | None = None
        if span is None:
            if self.auto_instrument:
                entered_span = stack.enter_context(logfire_span('run graph {graph.name}', graph=self))
        else:
            entered_span = stack.enter_context(span)
        traceparent = None if entered_span is None else get_traceparent(entered_span)
        async with GraphRun[StateT, DepsT, OutputT](
            graph=self,
            state=state,
            deps=deps,
            inputs=inputs,
            traceparent=traceparent,
        ) as graph_run:
            yield graph_run

render

render(
    *,
    title: str | None = None,
    direction: StateDiagramDirection | None = None
) -> str

Render the graph as a Mermaid diagram string.

Parameters:

Name Type Description Default
title str | None

Optional title for the diagram

None
direction StateDiagramDirection | None

Optional direction for the diagram layout

None

Returns:

Type Description
str

A string containing the Mermaid diagram representation

Source code in pydantic_graph/pydantic_graph/beta/graph.py
251
252
253
254
255
256
257
258
259
260
261
262
263
def render(self, *, title: str | None = None, direction: StateDiagramDirection | None = None) -> str:
    """Render the graph as a Mermaid diagram string.

    Args:
        title: Optional title for the diagram
        direction: Optional direction for the diagram layout

    Returns:
        A string containing the Mermaid diagram representation
    """
    from pydantic_graph.beta.mermaid import build_mermaid_graph

    return build_mermaid_graph(self.nodes, self.edges_by_source).render(title=title, direction=direction)

__str__

__str__() -> str

Return a Mermaid diagram representation of the graph.

Returns:

Type Description
str

A string containing the Mermaid diagram of the graph

Source code in pydantic_graph/pydantic_graph/beta/graph.py
270
271
272
273
274
275
276
def __str__(self) -> str:
    """Return a Mermaid diagram representation of the graph.

    Returns:
        A string containing the Mermaid diagram of the graph
    """
    return self.render()

GraphBuilder dataclass

Bases: Generic[StateT, DepsT, GraphInputT, GraphOutputT]

A builder for constructing executable graph definitions.

GraphBuilder provides a fluent interface for defining nodes, edges, and routing in a graph workflow. It supports typed state, dependencies, and input/output validation.

Type Parameters

StateT: The type of the graph state DepsT: The type of the dependencies GraphInputT: The type of the graph input data GraphOutputT: The type of the graph output data

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
@dataclass(init=False)
class GraphBuilder(Generic[StateT, DepsT, GraphInputT, GraphOutputT]):
    """A builder for constructing executable graph definitions.

    GraphBuilder provides a fluent interface for defining nodes, edges, and
    routing in a graph workflow. It supports typed state, dependencies, and
    input/output validation.

    Type Parameters:
        StateT: The type of the graph state
        DepsT: The type of the dependencies
        GraphInputT: The type of the graph input data
        GraphOutputT: The type of the graph output data
    """

    name: str | None
    """Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method."""

    state_type: TypeOrTypeExpression[StateT]
    """The type of the graph state."""

    deps_type: TypeOrTypeExpression[DepsT]
    """The type of the dependencies."""

    input_type: TypeOrTypeExpression[GraphInputT]
    """The type of the graph input data."""

    output_type: TypeOrTypeExpression[GraphOutputT]
    """The type of the graph output data."""

    auto_instrument: bool
    """Whether to automatically create instrumentation spans."""

    _nodes: dict[NodeID, AnyNode]
    """Internal storage for nodes in the graph."""

    _edges_by_source: dict[NodeID, list[Path]]
    """Internal storage for edges by source node."""

    _decision_index: int
    """Counter for generating unique decision node IDs."""

    Source = TypeAliasType('Source', SourceNode[StateT, DepsT, OutputT], type_params=(OutputT,))
    Destination = TypeAliasType('Destination', DestinationNode[StateT, DepsT, InputT], type_params=(InputT,))

    def __init__(
        self,
        *,
        name: str | None = None,
        state_type: TypeOrTypeExpression[StateT] = NoneType,
        deps_type: TypeOrTypeExpression[DepsT] = NoneType,
        input_type: TypeOrTypeExpression[GraphInputT] = NoneType,
        output_type: TypeOrTypeExpression[GraphOutputT] = NoneType,
        auto_instrument: bool = True,
    ):
        """Initialize a graph builder.

        Args:
            name: Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method.
            state_type: The type of the graph state
            deps_type: The type of the dependencies
            input_type: The type of the graph input data
            output_type: The type of the graph output data
            auto_instrument: Whether to automatically create instrumentation spans
        """
        self.name = name

        self.state_type = state_type
        self.deps_type = deps_type
        self.input_type = input_type
        self.output_type = output_type

        self.auto_instrument = auto_instrument

        self._nodes = {}
        self._edges_by_source = defaultdict(list)
        self._decision_index = 1

        self._start_node = StartNode[GraphInputT]()
        self._end_node = EndNode[GraphOutputT]()

    # Node building
    @property
    def start_node(self) -> StartNode[GraphInputT]:
        """Get the start node for the graph.

        Returns:
            The start node that receives the initial graph input
        """
        return self._start_node

    @property
    def end_node(self) -> EndNode[GraphOutputT]:
        """Get the end node for the graph.

        Returns:
            The end node that produces the final graph output
        """
        return self._end_node

    @overload
    def step(
        self,
        *,
        node_id: str | None = None,
        label: str | None = None,
    ) -> Callable[[StepFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, OutputT]]: ...
    @overload
    def step(
        self,
        call: StepFunction[StateT, DepsT, InputT, OutputT],
        *,
        node_id: str | None = None,
        label: str | None = None,
    ) -> Step[StateT, DepsT, InputT, OutputT]: ...
    def step(
        self,
        call: StepFunction[StateT, DepsT, InputT, OutputT] | None = None,
        *,
        node_id: str | None = None,
        label: str | None = None,
    ) -> (
        Step[StateT, DepsT, InputT, OutputT]
        | Callable[[StepFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, OutputT]]
    ):
        """Create a step from a step function.

        This method can be used as a decorator or called directly to create
        a step node from an async function.

        Args:
            call: The step function to wrap
            node_id: Optional ID for the node
            label: Optional human-readable label

        Returns:
            Either a Step instance or a decorator function
        """
        if call is None:

            def decorator(
                func: StepFunction[StateT, DepsT, InputT, OutputT],
            ) -> Step[StateT, DepsT, InputT, OutputT]:
                return self.step(call=func, node_id=node_id, label=label)

            return decorator

        node_id = node_id or get_callable_name(call)

        step = Step[StateT, DepsT, InputT, OutputT](id=NodeID(node_id), call=call, label=label)

        return step

    @overload
    def stream(
        self,
        *,
        node_id: str | None = None,
        label: str | None = None,
    ) -> Callable[
        [StreamFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]
    ]: ...
    @overload
    def stream(
        self,
        call: StreamFunction[StateT, DepsT, InputT, OutputT],
        *,
        node_id: str | None = None,
        label: str | None = None,
    ) -> Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]: ...
    @overload
    def stream(
        self,
        call: StreamFunction[StateT, DepsT, InputT, OutputT] | None = None,
        *,
        node_id: str | None = None,
        label: str | None = None,
    ) -> (
        Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]
        | Callable[
            [StreamFunction[StateT, DepsT, InputT, OutputT]],
            Step[StateT, DepsT, InputT, AsyncIterable[OutputT]],
        ]
    ): ...
    def stream(
        self,
        call: StreamFunction[StateT, DepsT, InputT, OutputT] | None = None,
        *,
        node_id: str | None = None,
        label: str | None = None,
    ) -> (
        Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]
        | Callable[
            [StreamFunction[StateT, DepsT, InputT, OutputT]],
            Step[StateT, DepsT, InputT, AsyncIterable[OutputT]],
        ]
    ):
        """Create a step from an async iterator (which functions like a "stream").

        This method can be used as a decorator or called directly to create
        a step node from an async function.

        Args:
            call: The step function to wrap
            node_id: Optional ID for the node
            label: Optional human-readable label

        Returns:
            Either a Step instance or a decorator function
        """
        if call is None:

            def decorator(
                func: StreamFunction[StateT, DepsT, InputT, OutputT],
            ) -> Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]:
                return self.stream(call=func, node_id=node_id, label=label)

            return decorator

        # We need to wrap the call so that we can call `await` even though the result is an async iterator
        async def wrapper(ctx: StepContext[StateT, DepsT, InputT]):
            return call(ctx)

        return self.step(call=wrapper, node_id=node_id, label=label)

    @overload
    def join(
        self,
        reducer: ReducerFunction[StateT, DepsT, InputT, OutputT],
        *,
        initial: OutputT,
        node_id: str | None = None,
        parent_fork_id: str | None = None,
        preferred_parent_fork: Literal['farthest', 'closest'] = 'farthest',
    ) -> Join[StateT, DepsT, InputT, OutputT]: ...
    @overload
    def join(
        self,
        reducer: ReducerFunction[StateT, DepsT, InputT, OutputT],
        *,
        initial_factory: Callable[[], OutputT],
        node_id: str | None = None,
        parent_fork_id: str | None = None,
        preferred_parent_fork: Literal['farthest', 'closest'] = 'farthest',
    ) -> Join[StateT, DepsT, InputT, OutputT]: ...

    def join(
        self,
        reducer: ReducerFunction[StateT, DepsT, InputT, OutputT],
        *,
        initial: OutputT | Unset = UNSET,
        initial_factory: Callable[[], OutputT] | Unset = UNSET,
        node_id: str | None = None,
        parent_fork_id: str | None = None,
        preferred_parent_fork: Literal['farthest', 'closest'] = 'farthest',
    ) -> Join[StateT, DepsT, InputT, OutputT]:
        if initial_factory is UNSET:
            initial_factory = lambda: initial  # pyright: ignore[reportAssignmentType]  # noqa E731

        return Join[StateT, DepsT, InputT, OutputT](
            id=JoinID(NodeID(node_id or generate_placeholder_node_id(get_callable_name(reducer)))),
            reducer=reducer,
            initial_factory=cast(Callable[[], OutputT], initial_factory),
            parent_fork_id=ForkID(parent_fork_id) if parent_fork_id is not None else None,
            preferred_parent_fork=preferred_parent_fork,
        )

    # Edge building
    def add(self, *edges: EdgePath[StateT, DepsT]) -> None:  # noqa C901
        """Add one or more edge paths to the graph.

        This method processes edge paths and automatically creates any necessary
        fork nodes for broadcasts and maps.

        Args:
            *edges: The edge paths to add to the graph
        """

        def _handle_path(p: Path):
            """Process a path and create necessary fork nodes.

            Args:
                p: The path to process
            """
            for item in p.items:
                if isinstance(item, BroadcastMarker):
                    new_node = Fork[Any, Any](id=item.fork_id, is_map=False, downstream_join_id=None)
                    self._insert_node(new_node)
                    for path in item.paths:
                        _handle_path(Path(items=[*path.items]))
                elif isinstance(item, MapMarker):
                    new_node = Fork[Any, Any](id=item.fork_id, is_map=True, downstream_join_id=item.downstream_join_id)
                    self._insert_node(new_node)
                elif isinstance(item, DestinationMarker):
                    pass

        def _handle_destination_node(d: AnyDestinationNode):
            if id(d) in destination_ids:
                return  # prevent infinite recursion if there is a cycle of decisions

            destination_ids.add(id(d))
            destinations.append(d)
            self._insert_node(d)
            if isinstance(d, Decision):
                for branch in d.branches:
                    _handle_path(branch.path)
                    for d2 in branch.destinations:
                        _handle_destination_node(d2)

        destination_ids = set[int]()
        destinations: list[AnyDestinationNode] = []
        for edge in edges:
            for source_node in edge.sources:
                self._insert_node(source_node)
                self._edges_by_source[source_node.id].append(edge.path)
            for destination_node in edge.destinations:
                _handle_destination_node(destination_node)
            _handle_path(edge.path)

        # Automatically create edges from step function return hints including `BaseNode`s
        for destination in destinations:
            if not isinstance(destination, Step) or isinstance(destination, NodeStep):
                continue
            parent_namespace = _utils.get_parent_namespace(inspect.currentframe())
            type_hints = get_type_hints(destination.call, localns=parent_namespace, include_extras=True)
            try:
                return_hint = type_hints['return']
            except KeyError:
                pass
            else:
                edge = self._edge_from_return_hint(destination, return_hint)
                if edge is not None:
                    self.add(edge)

    def add_edge(self, source: Source[T], destination: Destination[T], *, label: str | None = None) -> None:
        """Add a simple edge between two nodes.

        Args:
            source: The source node
            destination: The destination node
            label: Optional label for the edge
        """
        builder = self.edge_from(source)
        if label is not None:
            builder = builder.label(label)
        self.add(builder.to(destination))

    def add_mapping_edge(
        self,
        source: Source[Iterable[T]],
        map_to: Destination[T],
        *,
        pre_map_label: str | None = None,
        post_map_label: str | None = None,
        fork_id: ForkID | None = None,
        downstream_join_id: JoinID | None = None,
    ) -> None:
        """Add an edge that maps iterable data across parallel paths.

        Args:
            source: The source node that produces iterable data
            map_to: The destination node that receives individual items
            pre_map_label: Optional label before the map operation
            post_map_label: Optional label after the map operation
            fork_id: Optional ID for the fork node produced for this map operation
            downstream_join_id: Optional ID of a join node that will always be downstream of this map.
                Specifying this ensures correct handling if you try to map an empty iterable.
        """
        builder = self.edge_from(source)
        if pre_map_label is not None:
            builder = builder.label(pre_map_label)
        builder = builder.map(fork_id=fork_id, downstream_join_id=downstream_join_id)
        if post_map_label is not None:
            builder = builder.label(post_map_label)
        self.add(builder.to(map_to))

    # TODO(DavidM): Support adding subgraphs; I think this behaves like a step with the same inputs/outputs but gets rendered as a subgraph in mermaid

    def edge_from(self, *sources: Source[SourceOutputT]) -> EdgePathBuilder[StateT, DepsT, SourceOutputT]:
        """Create an edge path builder starting from the given source nodes.

        Args:
            *sources: The source nodes to start the edge path from

        Returns:
            An EdgePathBuilder for constructing the complete edge path
        """
        return EdgePathBuilder[StateT, DepsT, SourceOutputT](
            sources=sources, path_builder=PathBuilder(working_items=[])
        )

    def decision(self, *, note: str | None = None, node_id: str | None = None) -> Decision[StateT, DepsT, Never]:
        """Create a new decision node.

        Args:
            note: Optional note to describe the decision logic
            node_id: Optional ID for the node produced for this decision logic

        Returns:
            A new Decision node with no branches
        """
        return Decision(id=NodeID(node_id or generate_placeholder_node_id('decision')), branches=[], note=note)

    def match(
        self,
        source: TypeOrTypeExpression[SourceT],
        *,
        matches: Callable[[Any], bool] | None = None,
    ) -> DecisionBranchBuilder[StateT, DepsT, SourceT, SourceT, Never]:
        """Create a decision branch matcher.

        Args:
            source: The type or type expression to match against
            matches: Optional custom matching function

        Returns:
            A DecisionBranchBuilder for constructing the branch
        """
        # Note, the following node_id really is just a placeholder and shouldn't end up in the final graph
        # This is why we don't expose a way for end users to override the value used here.
        node_id = NodeID(generate_placeholder_node_id('match_decision'))
        decision = Decision[StateT, DepsT, Never](id=node_id, branches=[], note=None)
        new_path_builder = PathBuilder[StateT, DepsT, SourceT](working_items=[])
        return DecisionBranchBuilder(decision=decision, source=source, matches=matches, path_builder=new_path_builder)

    def match_node(
        self,
        source: type[SourceNodeT],
        *,
        matches: Callable[[Any], bool] | None = None,
    ) -> DecisionBranch[SourceNodeT]:
        """Create a decision branch for BaseNode subclasses.

        This is similar to match() but specifically designed for matching
        against BaseNode types from the v1 system.

        Args:
            source: The BaseNode subclass to match against
            matches: Optional custom matching function

        Returns:
            A DecisionBranch for the BaseNode type
        """
        node = NodeStep(source)
        path = Path(items=[DestinationMarker(node.id)])
        return DecisionBranch(source=source, matches=matches, path=path, destinations=[node])

    def node(
        self,
        node_type: type[BaseNode[StateT, DepsT, GraphOutputT]],
    ) -> EdgePath[StateT, DepsT]:
        """Create an edge path from a BaseNode class.

        This method integrates v1-style BaseNode classes into the v2 graph
        system by analyzing their type hints and creating appropriate edges.

        Args:
            node_type: The BaseNode subclass to integrate

        Returns:
            An EdgePath representing the node and its connections

        Raises:
            GraphSetupError: If the node type is missing required type hints
        """
        parent_namespace = _utils.get_parent_namespace(inspect.currentframe())
        type_hints = get_type_hints(node_type.run, localns=parent_namespace, include_extras=True)
        try:
            return_hint = type_hints['return']
        except KeyError as e:  # pragma: no cover
            raise exceptions.GraphSetupError(
                f'Node {node_type} is missing a return type hint on its `run` method'
            ) from e

        node = NodeStep(node_type)

        edge = self._edge_from_return_hint(node, return_hint)
        if not edge:  # pragma: no cover
            raise exceptions.GraphSetupError(f'Node {node_type} is missing a return type hint on its `run` method')

        return edge

    # Helpers
    def _insert_node(self, node: AnyNode) -> None:
        """Insert a node into the graph, checking for ID conflicts.

        Args:
            node: The node to insert

        Raises:
            ValueError: If a different node with the same ID already exists
        """
        existing = self._nodes.get(node.id)
        if existing is None:
            self._nodes[node.id] = node
        elif isinstance(existing, NodeStep) and isinstance(node, NodeStep) and existing.node_type is node.node_type:
            pass
        elif existing is not node:
            raise GraphBuildingError(
                f'All nodes must have unique node IDs. {node.id!r} was the ID for {existing} and {node}'
            )

    def _edge_from_return_hint(
        self, node: SourceNode[StateT, DepsT, Any], return_hint: TypeOrTypeExpression[Any]
    ) -> EdgePath[StateT, DepsT] | None:
        """Create edges from a return type hint.

        This method analyzes return type hints from step functions or node methods
        to automatically create appropriate edges in the graph.

        Args:
            node: The source node
            return_hint: The return type hint to analyze

        Returns:
            An EdgePath if edges can be inferred, None otherwise

        Raises:
            GraphSetupError: If the return type hint is invalid or incomplete
        """
        destinations: list[AnyDestinationNode] = []
        union_args = _utils.get_union_args(return_hint)
        for return_type in union_args:
            return_type, annotations = _utils.unpack_annotated(return_type)
            return_type_origin = get_origin(return_type) or return_type
            if return_type_origin is End:
                destinations.append(self.end_node)
            elif return_type_origin is BaseNode:
                raise exceptions.GraphSetupError(  # pragma: no cover
                    f'Node {node} return type hint includes a plain `BaseNode`. '
                    'Edge inference requires each possible returned `BaseNode` subclass to be listed explicitly.'
                )
            elif return_type_origin is StepNode:
                step = cast(
                    Step[StateT, DepsT, Any, Any] | None,
                    next((a for a in annotations if isinstance(a, Step)), None),  # pyright: ignore[reportUnknownArgumentType]
                )
                if step is None:
                    raise exceptions.GraphSetupError(  # pragma: no cover
                        f'Node {node} return type hint includes a `StepNode` without a `Step` annotation. '
                        'When returning `my_step.as_node()`, use `Annotated[StepNode[StateT, DepsT], my_step]` as the return type hint.'
                    )
                destinations.append(step)
            elif return_type_origin is JoinNode:
                join = cast(
                    Join[StateT, DepsT, Any, Any] | None,
                    next((a for a in annotations if isinstance(a, Join)), None),  # pyright: ignore[reportUnknownArgumentType]
                )
                if join is None:
                    raise exceptions.GraphSetupError(  # pragma: no cover
                        f'Node {node} return type hint includes a `JoinNode` without a `Join` annotation. '
                        'When returning `my_join.as_node()`, use `Annotated[JoinNode[StateT, DepsT], my_join]` as the return type hint.'
                    )
                destinations.append(join)
            elif inspect.isclass(return_type_origin) and issubclass(return_type_origin, BaseNode):
                destinations.append(NodeStep(return_type))

        if len(destinations) < len(union_args):
            # Only build edges if all the return types are nodes
            return None

        edge = self.edge_from(node)
        if len(destinations) == 1:
            return edge.to(destinations[0])
        else:
            decision = self.decision()
            for destination in destinations:
                # We don't actually use this decision mechanism, but we need to build the edges for parent-fork finding
                decision = decision.branch(self.match(NoneType).to(destination))
            return edge.to(decision)

    # Graph building
    def build(self, validate_graph_structure: bool = True) -> Graph[StateT, DepsT, GraphInputT, GraphOutputT]:
        """Build the final executable graph from the accumulated nodes and edges.

        This method performs validation, normalization, and analysis of the graph
        structure to create a complete, executable graph instance.

        Args:
            validate_graph_structure: whether to perform validation of the graph structure
                See the docstring of _validate_graph_structure below for more details.

        Returns:
            A complete Graph instance ready for execution

        Raises:
            ValueError: If the graph structure is invalid (e.g., join without parent fork)
        """
        nodes = self._nodes
        edges_by_source = self._edges_by_source

        nodes, edges_by_source = _replace_placeholder_node_ids(nodes, edges_by_source)
        nodes, edges_by_source = _flatten_paths(nodes, edges_by_source)
        nodes, edges_by_source = _normalize_forks(nodes, edges_by_source)
        if validate_graph_structure:
            _validate_graph_structure(nodes, edges_by_source)
        parent_forks = _collect_dominating_forks(nodes, edges_by_source)

        return Graph[StateT, DepsT, GraphInputT, GraphOutputT](
            name=self.name,
            state_type=unpack_type_expression(self.state_type),
            deps_type=unpack_type_expression(self.deps_type),
            input_type=unpack_type_expression(self.input_type),
            output_type=unpack_type_expression(self.output_type),
            nodes=nodes,
            edges_by_source=edges_by_source,
            parent_forks=parent_forks,
            auto_instrument=self.auto_instrument,
        )

name instance-attribute

name: str | None = name

Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method.

state_type instance-attribute

state_type: TypeOrTypeExpression[StateT] = state_type

The type of the graph state.

deps_type instance-attribute

deps_type: TypeOrTypeExpression[DepsT] = deps_type

The type of the dependencies.

input_type instance-attribute

input_type: TypeOrTypeExpression[GraphInputT] = input_type

The type of the graph input data.

output_type instance-attribute

output_type: TypeOrTypeExpression[GraphOutputT] = (
    output_type
)

The type of the graph output data.

auto_instrument instance-attribute

auto_instrument: bool = auto_instrument

Whether to automatically create instrumentation spans.

__init__

__init__(
    *,
    name: str | None = None,
    state_type: TypeOrTypeExpression[StateT] = NoneType,
    deps_type: TypeOrTypeExpression[DepsT] = NoneType,
    input_type: TypeOrTypeExpression[
        GraphInputT
    ] = NoneType,
    output_type: TypeOrTypeExpression[
        GraphOutputT
    ] = NoneType,
    auto_instrument: bool = True
)

Initialize a graph builder.

Parameters:

Name Type Description Default
name str | None

Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method.

None
state_type TypeOrTypeExpression[StateT]

The type of the graph state

NoneType
deps_type TypeOrTypeExpression[DepsT]

The type of the dependencies

NoneType
input_type TypeOrTypeExpression[GraphInputT]

The type of the graph input data

NoneType
output_type TypeOrTypeExpression[GraphOutputT]

The type of the graph output data

NoneType
auto_instrument bool

Whether to automatically create instrumentation spans

True
Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def __init__(
    self,
    *,
    name: str | None = None,
    state_type: TypeOrTypeExpression[StateT] = NoneType,
    deps_type: TypeOrTypeExpression[DepsT] = NoneType,
    input_type: TypeOrTypeExpression[GraphInputT] = NoneType,
    output_type: TypeOrTypeExpression[GraphOutputT] = NoneType,
    auto_instrument: bool = True,
):
    """Initialize a graph builder.

    Args:
        name: Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method.
        state_type: The type of the graph state
        deps_type: The type of the dependencies
        input_type: The type of the graph input data
        output_type: The type of the graph output data
        auto_instrument: Whether to automatically create instrumentation spans
    """
    self.name = name

    self.state_type = state_type
    self.deps_type = deps_type
    self.input_type = input_type
    self.output_type = output_type

    self.auto_instrument = auto_instrument

    self._nodes = {}
    self._edges_by_source = defaultdict(list)
    self._decision_index = 1

    self._start_node = StartNode[GraphInputT]()
    self._end_node = EndNode[GraphOutputT]()

start_node property

start_node: StartNode[GraphInputT]

Get the start node for the graph.

Returns:

Type Description
StartNode[GraphInputT]

The start node that receives the initial graph input

end_node property

end_node: EndNode[GraphOutputT]

Get the end node for the graph.

Returns:

Type Description
EndNode[GraphOutputT]

The end node that produces the final graph output

step

step(
    *, node_id: str | None = None, label: str | None = None
) -> Callable[
    [StepFunction[StateT, DepsT, InputT, OutputT]],
    Step[StateT, DepsT, InputT, OutputT],
]
step(
    call: StepFunction[StateT, DepsT, InputT, OutputT],
    *,
    node_id: str | None = None,
    label: str | None = None
) -> Step[StateT, DepsT, InputT, OutputT]
step(
    call: (
        StepFunction[StateT, DepsT, InputT, OutputT] | None
    ) = None,
    *,
    node_id: str | None = None,
    label: str | None = None
) -> (
    Step[StateT, DepsT, InputT, OutputT]
    | Callable[
        [StepFunction[StateT, DepsT, InputT, OutputT]],
        Step[StateT, DepsT, InputT, OutputT],
    ]
)

Create a step from a step function.

This method can be used as a decorator or called directly to create a step node from an async function.

Parameters:

Name Type Description Default
call StepFunction[StateT, DepsT, InputT, OutputT] | None

The step function to wrap

None
node_id str | None

Optional ID for the node

None
label str | None

Optional human-readable label

None

Returns:

Type Description
Step[StateT, DepsT, InputT, OutputT] | Callable[[StepFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, OutputT]]

Either a Step instance or a decorator function

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
def step(
    self,
    call: StepFunction[StateT, DepsT, InputT, OutputT] | None = None,
    *,
    node_id: str | None = None,
    label: str | None = None,
) -> (
    Step[StateT, DepsT, InputT, OutputT]
    | Callable[[StepFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, OutputT]]
):
    """Create a step from a step function.

    This method can be used as a decorator or called directly to create
    a step node from an async function.

    Args:
        call: The step function to wrap
        node_id: Optional ID for the node
        label: Optional human-readable label

    Returns:
        Either a Step instance or a decorator function
    """
    if call is None:

        def decorator(
            func: StepFunction[StateT, DepsT, InputT, OutputT],
        ) -> Step[StateT, DepsT, InputT, OutputT]:
            return self.step(call=func, node_id=node_id, label=label)

        return decorator

    node_id = node_id or get_callable_name(call)

    step = Step[StateT, DepsT, InputT, OutputT](id=NodeID(node_id), call=call, label=label)

    return step

stream

stream(
    *, node_id: str | None = None, label: str | None = None
) -> Callable[
    [StreamFunction[StateT, DepsT, InputT, OutputT]],
    Step[StateT, DepsT, InputT, AsyncIterable[OutputT]],
]
stream(
    call: StreamFunction[StateT, DepsT, InputT, OutputT],
    *,
    node_id: str | None = None,
    label: str | None = None
) -> Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]
stream(
    call: (
        StreamFunction[StateT, DepsT, InputT, OutputT]
        | None
    ) = None,
    *,
    node_id: str | None = None,
    label: str | None = None
) -> (
    Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]
    | Callable[
        [StreamFunction[StateT, DepsT, InputT, OutputT]],
        Step[StateT, DepsT, InputT, AsyncIterable[OutputT]],
    ]
)
stream(
    call: (
        StreamFunction[StateT, DepsT, InputT, OutputT]
        | None
    ) = None,
    *,
    node_id: str | None = None,
    label: str | None = None
) -> (
    Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]
    | Callable[
        [StreamFunction[StateT, DepsT, InputT, OutputT]],
        Step[StateT, DepsT, InputT, AsyncIterable[OutputT]],
    ]
)

Create a step from an async iterator (which functions like a "stream").

This method can be used as a decorator or called directly to create a step node from an async function.

Parameters:

Name Type Description Default
call StreamFunction[StateT, DepsT, InputT, OutputT] | None

The step function to wrap

None
node_id str | None

Optional ID for the node

None
label str | None

Optional human-readable label

None

Returns:

Type Description
Step[StateT, DepsT, InputT, AsyncIterable[OutputT]] | Callable[[StreamFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]]

Either a Step instance or a decorator function

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
def stream(
    self,
    call: StreamFunction[StateT, DepsT, InputT, OutputT] | None = None,
    *,
    node_id: str | None = None,
    label: str | None = None,
) -> (
    Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]
    | Callable[
        [StreamFunction[StateT, DepsT, InputT, OutputT]],
        Step[StateT, DepsT, InputT, AsyncIterable[OutputT]],
    ]
):
    """Create a step from an async iterator (which functions like a "stream").

    This method can be used as a decorator or called directly to create
    a step node from an async function.

    Args:
        call: The step function to wrap
        node_id: Optional ID for the node
        label: Optional human-readable label

    Returns:
        Either a Step instance or a decorator function
    """
    if call is None:

        def decorator(
            func: StreamFunction[StateT, DepsT, InputT, OutputT],
        ) -> Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]:
            return self.stream(call=func, node_id=node_id, label=label)

        return decorator

    # We need to wrap the call so that we can call `await` even though the result is an async iterator
    async def wrapper(ctx: StepContext[StateT, DepsT, InputT]):
        return call(ctx)

    return self.step(call=wrapper, node_id=node_id, label=label)

add

add(*edges: EdgePath[StateT, DepsT]) -> None

Add one or more edge paths to the graph.

This method processes edge paths and automatically creates any necessary fork nodes for broadcasts and maps.

Parameters:

Name Type Description Default
*edges EdgePath[StateT, DepsT]

The edge paths to add to the graph

()
Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
def add(self, *edges: EdgePath[StateT, DepsT]) -> None:  # noqa C901
    """Add one or more edge paths to the graph.

    This method processes edge paths and automatically creates any necessary
    fork nodes for broadcasts and maps.

    Args:
        *edges: The edge paths to add to the graph
    """

    def _handle_path(p: Path):
        """Process a path and create necessary fork nodes.

        Args:
            p: The path to process
        """
        for item in p.items:
            if isinstance(item, BroadcastMarker):
                new_node = Fork[Any, Any](id=item.fork_id, is_map=False, downstream_join_id=None)
                self._insert_node(new_node)
                for path in item.paths:
                    _handle_path(Path(items=[*path.items]))
            elif isinstance(item, MapMarker):
                new_node = Fork[Any, Any](id=item.fork_id, is_map=True, downstream_join_id=item.downstream_join_id)
                self._insert_node(new_node)
            elif isinstance(item, DestinationMarker):
                pass

    def _handle_destination_node(d: AnyDestinationNode):
        if id(d) in destination_ids:
            return  # prevent infinite recursion if there is a cycle of decisions

        destination_ids.add(id(d))
        destinations.append(d)
        self._insert_node(d)
        if isinstance(d, Decision):
            for branch in d.branches:
                _handle_path(branch.path)
                for d2 in branch.destinations:
                    _handle_destination_node(d2)

    destination_ids = set[int]()
    destinations: list[AnyDestinationNode] = []
    for edge in edges:
        for source_node in edge.sources:
            self._insert_node(source_node)
            self._edges_by_source[source_node.id].append(edge.path)
        for destination_node in edge.destinations:
            _handle_destination_node(destination_node)
        _handle_path(edge.path)

    # Automatically create edges from step function return hints including `BaseNode`s
    for destination in destinations:
        if not isinstance(destination, Step) or isinstance(destination, NodeStep):
            continue
        parent_namespace = _utils.get_parent_namespace(inspect.currentframe())
        type_hints = get_type_hints(destination.call, localns=parent_namespace, include_extras=True)
        try:
            return_hint = type_hints['return']
        except KeyError:
            pass
        else:
            edge = self._edge_from_return_hint(destination, return_hint)
            if edge is not None:
                self.add(edge)

add_edge

add_edge(
    source: Source[T],
    destination: Destination[T],
    *,
    label: str | None = None
) -> None

Add a simple edge between two nodes.

Parameters:

Name Type Description Default
source Source[T]

The source node

required
destination Destination[T]

The destination node

required
label str | None

Optional label for the edge

None
Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
398
399
400
401
402
403
404
405
406
407
408
409
def add_edge(self, source: Source[T], destination: Destination[T], *, label: str | None = None) -> None:
    """Add a simple edge between two nodes.

    Args:
        source: The source node
        destination: The destination node
        label: Optional label for the edge
    """
    builder = self.edge_from(source)
    if label is not None:
        builder = builder.label(label)
    self.add(builder.to(destination))

add_mapping_edge

add_mapping_edge(
    source: Source[Iterable[T]],
    map_to: Destination[T],
    *,
    pre_map_label: str | None = None,
    post_map_label: str | None = None,
    fork_id: ForkID | None = None,
    downstream_join_id: JoinID | None = None
) -> None

Add an edge that maps iterable data across parallel paths.

Parameters:

Name Type Description Default
source Source[Iterable[T]]

The source node that produces iterable data

required
map_to Destination[T]

The destination node that receives individual items

required
pre_map_label str | None

Optional label before the map operation

None
post_map_label str | None

Optional label after the map operation

None
fork_id ForkID | None

Optional ID for the fork node produced for this map operation

None
downstream_join_id JoinID | None

Optional ID of a join node that will always be downstream of this map. Specifying this ensures correct handling if you try to map an empty iterable.

None
Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
def add_mapping_edge(
    self,
    source: Source[Iterable[T]],
    map_to: Destination[T],
    *,
    pre_map_label: str | None = None,
    post_map_label: str | None = None,
    fork_id: ForkID | None = None,
    downstream_join_id: JoinID | None = None,
) -> None:
    """Add an edge that maps iterable data across parallel paths.

    Args:
        source: The source node that produces iterable data
        map_to: The destination node that receives individual items
        pre_map_label: Optional label before the map operation
        post_map_label: Optional label after the map operation
        fork_id: Optional ID for the fork node produced for this map operation
        downstream_join_id: Optional ID of a join node that will always be downstream of this map.
            Specifying this ensures correct handling if you try to map an empty iterable.
    """
    builder = self.edge_from(source)
    if pre_map_label is not None:
        builder = builder.label(pre_map_label)
    builder = builder.map(fork_id=fork_id, downstream_join_id=downstream_join_id)
    if post_map_label is not None:
        builder = builder.label(post_map_label)
    self.add(builder.to(map_to))

edge_from

edge_from(
    *sources: Source[SourceOutputT],
) -> EdgePathBuilder[StateT, DepsT, SourceOutputT]

Create an edge path builder starting from the given source nodes.

Parameters:

Name Type Description Default
*sources Source[SourceOutputT]

The source nodes to start the edge path from

()

Returns:

Type Description
EdgePathBuilder[StateT, DepsT, SourceOutputT]

An EdgePathBuilder for constructing the complete edge path

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
442
443
444
445
446
447
448
449
450
451
452
453
def edge_from(self, *sources: Source[SourceOutputT]) -> EdgePathBuilder[StateT, DepsT, SourceOutputT]:
    """Create an edge path builder starting from the given source nodes.

    Args:
        *sources: The source nodes to start the edge path from

    Returns:
        An EdgePathBuilder for constructing the complete edge path
    """
    return EdgePathBuilder[StateT, DepsT, SourceOutputT](
        sources=sources, path_builder=PathBuilder(working_items=[])
    )

decision

decision(
    *, note: str | None = None, node_id: str | None = None
) -> Decision[StateT, DepsT, Never]

Create a new decision node.

Parameters:

Name Type Description Default
note str | None

Optional note to describe the decision logic

None
node_id str | None

Optional ID for the node produced for this decision logic

None

Returns:

Type Description
Decision[StateT, DepsT, Never]

A new Decision node with no branches

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
455
456
457
458
459
460
461
462
463
464
465
def decision(self, *, note: str | None = None, node_id: str | None = None) -> Decision[StateT, DepsT, Never]:
    """Create a new decision node.

    Args:
        note: Optional note to describe the decision logic
        node_id: Optional ID for the node produced for this decision logic

    Returns:
        A new Decision node with no branches
    """
    return Decision(id=NodeID(node_id or generate_placeholder_node_id('decision')), branches=[], note=note)

match

match(
    source: TypeOrTypeExpression[SourceT],
    *,
    matches: Callable[[Any], bool] | None = None
) -> DecisionBranchBuilder[
    StateT, DepsT, SourceT, SourceT, Never
]

Create a decision branch matcher.

Parameters:

Name Type Description Default
source TypeOrTypeExpression[SourceT]

The type or type expression to match against

required
matches Callable[[Any], bool] | None

Optional custom matching function

None

Returns:

Type Description
DecisionBranchBuilder[StateT, DepsT, SourceT, SourceT, Never]

A DecisionBranchBuilder for constructing the branch

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
def match(
    self,
    source: TypeOrTypeExpression[SourceT],
    *,
    matches: Callable[[Any], bool] | None = None,
) -> DecisionBranchBuilder[StateT, DepsT, SourceT, SourceT, Never]:
    """Create a decision branch matcher.

    Args:
        source: The type or type expression to match against
        matches: Optional custom matching function

    Returns:
        A DecisionBranchBuilder for constructing the branch
    """
    # Note, the following node_id really is just a placeholder and shouldn't end up in the final graph
    # This is why we don't expose a way for end users to override the value used here.
    node_id = NodeID(generate_placeholder_node_id('match_decision'))
    decision = Decision[StateT, DepsT, Never](id=node_id, branches=[], note=None)
    new_path_builder = PathBuilder[StateT, DepsT, SourceT](working_items=[])
    return DecisionBranchBuilder(decision=decision, source=source, matches=matches, path_builder=new_path_builder)

match_node

match_node(
    source: type[SourceNodeT],
    *,
    matches: Callable[[Any], bool] | None = None
) -> DecisionBranch[SourceNodeT]

Create a decision branch for BaseNode subclasses.

This is similar to match() but specifically designed for matching against BaseNode types from the v1 system.

Parameters:

Name Type Description Default
source type[SourceNodeT]

The BaseNode subclass to match against

required
matches Callable[[Any], bool] | None

Optional custom matching function

None

Returns:

Type Description
DecisionBranch[SourceNodeT]

A DecisionBranch for the BaseNode type

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
def match_node(
    self,
    source: type[SourceNodeT],
    *,
    matches: Callable[[Any], bool] | None = None,
) -> DecisionBranch[SourceNodeT]:
    """Create a decision branch for BaseNode subclasses.

    This is similar to match() but specifically designed for matching
    against BaseNode types from the v1 system.

    Args:
        source: The BaseNode subclass to match against
        matches: Optional custom matching function

    Returns:
        A DecisionBranch for the BaseNode type
    """
    node = NodeStep(source)
    path = Path(items=[DestinationMarker(node.id)])
    return DecisionBranch(source=source, matches=matches, path=path, destinations=[node])

node

node(
    node_type: type[BaseNode[StateT, DepsT, GraphOutputT]],
) -> EdgePath[StateT, DepsT]

Create an edge path from a BaseNode class.

This method integrates v1-style BaseNode classes into the v2 graph system by analyzing their type hints and creating appropriate edges.

Parameters:

Name Type Description Default
node_type type[BaseNode[StateT, DepsT, GraphOutputT]]

The BaseNode subclass to integrate

required

Returns:

Type Description
EdgePath[StateT, DepsT]

An EdgePath representing the node and its connections

Raises:

Type Description
GraphSetupError

If the node type is missing required type hints

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
def node(
    self,
    node_type: type[BaseNode[StateT, DepsT, GraphOutputT]],
) -> EdgePath[StateT, DepsT]:
    """Create an edge path from a BaseNode class.

    This method integrates v1-style BaseNode classes into the v2 graph
    system by analyzing their type hints and creating appropriate edges.

    Args:
        node_type: The BaseNode subclass to integrate

    Returns:
        An EdgePath representing the node and its connections

    Raises:
        GraphSetupError: If the node type is missing required type hints
    """
    parent_namespace = _utils.get_parent_namespace(inspect.currentframe())
    type_hints = get_type_hints(node_type.run, localns=parent_namespace, include_extras=True)
    try:
        return_hint = type_hints['return']
    except KeyError as e:  # pragma: no cover
        raise exceptions.GraphSetupError(
            f'Node {node_type} is missing a return type hint on its `run` method'
        ) from e

    node = NodeStep(node_type)

    edge = self._edge_from_return_hint(node, return_hint)
    if not edge:  # pragma: no cover
        raise exceptions.GraphSetupError(f'Node {node_type} is missing a return type hint on its `run` method')

    return edge

build

build(
    validate_graph_structure: bool = True,
) -> Graph[StateT, DepsT, GraphInputT, GraphOutputT]

Build the final executable graph from the accumulated nodes and edges.

This method performs validation, normalization, and analysis of the graph structure to create a complete, executable graph instance.

Parameters:

Name Type Description Default
validate_graph_structure bool

whether to perform validation of the graph structure See the docstring of _validate_graph_structure below for more details.

True

Returns:

Type Description
Graph[StateT, DepsT, GraphInputT, GraphOutputT]

A complete Graph instance ready for execution

Raises:

Type Description
ValueError

If the graph structure is invalid (e.g., join without parent fork)

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
def build(self, validate_graph_structure: bool = True) -> Graph[StateT, DepsT, GraphInputT, GraphOutputT]:
    """Build the final executable graph from the accumulated nodes and edges.

    This method performs validation, normalization, and analysis of the graph
    structure to create a complete, executable graph instance.

    Args:
        validate_graph_structure: whether to perform validation of the graph structure
            See the docstring of _validate_graph_structure below for more details.

    Returns:
        A complete Graph instance ready for execution

    Raises:
        ValueError: If the graph structure is invalid (e.g., join without parent fork)
    """
    nodes = self._nodes
    edges_by_source = self._edges_by_source

    nodes, edges_by_source = _replace_placeholder_node_ids(nodes, edges_by_source)
    nodes, edges_by_source = _flatten_paths(nodes, edges_by_source)
    nodes, edges_by_source = _normalize_forks(nodes, edges_by_source)
    if validate_graph_structure:
        _validate_graph_structure(nodes, edges_by_source)
    parent_forks = _collect_dominating_forks(nodes, edges_by_source)

    return Graph[StateT, DepsT, GraphInputT, GraphOutputT](
        name=self.name,
        state_type=unpack_type_expression(self.state_type),
        deps_type=unpack_type_expression(self.deps_type),
        input_type=unpack_type_expression(self.input_type),
        output_type=unpack_type_expression(self.output_type),
        nodes=nodes,
        edges_by_source=edges_by_source,
        parent_forks=parent_forks,
        auto_instrument=self.auto_instrument,
    )

EndNode

Bases: Generic[InputT]

Terminal node representing the completion of graph execution.

The EndNode marks the successful completion of a graph execution flow and can collect the final output data.

Source code in pydantic_graph/pydantic_graph/beta/node.py
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
class EndNode(Generic[InputT]):
    """Terminal node representing the completion of graph execution.

    The EndNode marks the successful completion of a graph execution flow
    and can collect the final output data.
    """

    id = NodeID('__end__')
    """Fixed identifier for the end node."""

    def _force_variance(self, inputs: InputT) -> None:  # pragma: no cover
        """Force type variance for proper generic typing.

        This method exists solely for type checking purposes and should never be called.

        Args:
            inputs: Input data of type InputT.

        Raises:
            RuntimeError: Always, as this method should never be executed.
        """
        raise RuntimeError('This method should never be called, it is just defined for typing purposes.')

id class-attribute instance-attribute

id = NodeID('__end__')

Fixed identifier for the end node.

StartNode

Bases: Generic[OutputT]

Entry point node for graph execution.

The StartNode represents the beginning of a graph execution flow.

Source code in pydantic_graph/pydantic_graph/beta/node.py
26
27
28
29
30
31
32
33
class StartNode(Generic[OutputT]):
    """Entry point node for graph execution.

    The StartNode represents the beginning of a graph execution flow.
    """

    id = NodeID('__start__')
    """Fixed identifier for the start node."""

id class-attribute instance-attribute

id = NodeID('__start__')

Fixed identifier for the start node.

StepContext dataclass

Bases: Generic[StateT, DepsT, InputT]

Context information passed to step functions during graph execution.

The step context provides access to the current graph state, dependencies, and input data for a step.

Type Parameters

StateT: The type of the graph state DepsT: The type of the dependencies InputT: The type of the input data

Source code in pydantic_graph/pydantic_graph/beta/step.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
@dataclass(init=False)
class StepContext(Generic[StateT, DepsT, InputT]):
    """Context information passed to step functions during graph execution.

    The step context provides access to the current graph state, dependencies, and input data for a step.

    Type Parameters:
        StateT: The type of the graph state
        DepsT: The type of the dependencies
        InputT: The type of the input data
    """

    _state: StateT
    """The current graph state."""
    _deps: DepsT
    """The graph run dependencies."""
    _inputs: InputT
    """The input data for this step."""

    def __init__(self, *, state: StateT, deps: DepsT, inputs: InputT):
        self._state = state
        self._deps = deps
        self._inputs = inputs

    @property
    def state(self) -> StateT:
        return self._state

    @property
    def deps(self) -> DepsT:
        return self._deps

    @property
    def inputs(self) -> InputT:
        """The input data for this step.

        This must be a property to ensure correct variance behavior
        """
        return self._inputs

inputs property

inputs: InputT

The input data for this step.

This must be a property to ensure correct variance behavior

StepNode dataclass

Bases: BaseNode[StateT, DepsT, Any]

A base node that represents a step with bound inputs.

StepNode bridges between the v1 and v2 graph execution systems by wrapping a Step with bound inputs in a BaseNode interface. It is not meant to be run directly but rather used to indicate transitions to v2-style steps.

Source code in pydantic_graph/pydantic_graph/beta/step.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
@dataclass
class StepNode(BaseNode[StateT, DepsT, Any]):
    """A base node that represents a step with bound inputs.

    StepNode bridges between the v1 and v2 graph execution systems by wrapping
    a [`Step`][pydantic_graph.beta.step.Step] with bound inputs in a BaseNode interface.
    It is not meant to be run directly but rather used to indicate transitions
    to v2-style steps.
    """

    step: Step[StateT, DepsT, Any, Any]
    """The step to execute."""

    inputs: Any
    """The inputs bound to this step."""

    async def run(self, ctx: GraphRunContext[StateT, DepsT]) -> BaseNode[StateT, DepsT, Any] | End[Any]:
        """Attempt to run the step node.

        Args:
            ctx: The graph execution context

        Returns:
            The result of step execution

        Raises:
            NotImplementedError: Always raised as StepNode is not meant to be run directly
        """
        raise NotImplementedError(
            '`StepNode` is not meant to be run directly, it is meant to be used in `BaseNode` subclasses to indicate a transition to v2-style steps.'
        )

step instance-attribute

step: Step[StateT, DepsT, Any, Any]

The step to execute.

inputs instance-attribute

inputs: Any

The inputs bound to this step.

run async

run(
    ctx: GraphRunContext[StateT, DepsT],
) -> BaseNode[StateT, DepsT, Any] | End[Any]

Attempt to run the step node.

Parameters:

Name Type Description Default
ctx GraphRunContext[StateT, DepsT]

The graph execution context

required

Returns:

Type Description
BaseNode[StateT, DepsT, Any] | End[Any]

The result of step execution

Raises:

Type Description
NotImplementedError

Always raised as StepNode is not meant to be run directly

Source code in pydantic_graph/pydantic_graph/beta/step.py
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
async def run(self, ctx: GraphRunContext[StateT, DepsT]) -> BaseNode[StateT, DepsT, Any] | End[Any]:
    """Attempt to run the step node.

    Args:
        ctx: The graph execution context

    Returns:
        The result of step execution

    Raises:
        NotImplementedError: Always raised as StepNode is not meant to be run directly
    """
    raise NotImplementedError(
        '`StepNode` is not meant to be run directly, it is meant to be used in `BaseNode` subclasses to indicate a transition to v2-style steps.'
    )

TypeExpression

Bases: Generic[T]

A workaround for type checker limitations when using complex type expressions.

This class serves as a wrapper for types that cannot normally be used in positions

requiring type[T], such as Any, Union[...], or Literal[...]. It provides a way to pass these complex type expressions to functions expecting concrete types.

Example

Instead of output_type=Union[str, int] (which may cause type errors), use output_type=TypeExpression[Union[str, int]].

Note

This is a workaround for the lack of TypeForm in the Python type system.

Source code in pydantic_graph/pydantic_graph/beta/util.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class TypeExpression(Generic[T]):
    """A workaround for type checker limitations when using complex type expressions.

        This class serves as a wrapper for types that cannot normally be used in positions
    requiring `type[T]`, such as `Any`, `Union[...]`, or `Literal[...]`. It provides a
        way to pass these complex type expressions to functions expecting concrete types.

    Example:
            Instead of `output_type=Union[str, int]` (which may cause type errors),
            use `output_type=TypeExpression[Union[str, int]]`.

    Note:
            This is a workaround for the lack of TypeForm in the Python type system.
    """

    pass