pydantic_ai.result
ResultData
module-attribute
ResultData = TypeVar('ResultData')
Type variable for the result data of a run.
RunResult
dataclass
Bases: _BaseRunResult[ResultData]
Result of a non-streamed run.
Source code in pydantic_ai_slim/pydantic_ai/result.py
102 103 104 105 106 107 108 109 110 111 112 |
|
all_messages
Return the history of messages.
Source code in pydantic_ai_slim/pydantic_ai/result.py
77 78 79 80 |
|
all_messages_json
all_messages_json() -> bytes
Return all messages from all_messages
as JSON bytes.
Source code in pydantic_ai_slim/pydantic_ai/result.py
82 83 84 |
|
new_messages
Return new messages associated with this run.
System prompts and any messages from older runs are excluded.
Source code in pydantic_ai_slim/pydantic_ai/result.py
86 87 88 89 90 91 |
|
new_messages_json
new_messages_json() -> bytes
Return new messages from new_messages
as JSON bytes.
Source code in pydantic_ai_slim/pydantic_ai/result.py
93 94 95 |
|
cost
cost() -> Cost
Return the cost of the whole run.
Source code in pydantic_ai_slim/pydantic_ai/result.py
110 111 112 |
|
StreamedRunResult
dataclass
Bases: _BaseRunResult[ResultData]
, Generic[AgentDeps, ResultData]
Result of a streamed run that returns structured data via a tool call.
Source code in pydantic_ai_slim/pydantic_ai/result.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
all_messages
Return the history of messages.
Source code in pydantic_ai_slim/pydantic_ai/result.py
77 78 79 80 |
|
all_messages_json
all_messages_json() -> bytes
Return all messages from all_messages
as JSON bytes.
Source code in pydantic_ai_slim/pydantic_ai/result.py
82 83 84 |
|
new_messages
Return new messages associated with this run.
System prompts and any messages from older runs are excluded.
Source code in pydantic_ai_slim/pydantic_ai/result.py
86 87 88 89 90 91 |
|
new_messages_json
new_messages_json() -> bytes
Return new messages from new_messages
as JSON bytes.
Source code in pydantic_ai_slim/pydantic_ai/result.py
93 94 95 |
|
is_complete
class-attribute
instance-attribute
Whether the stream has all been received.
This is set to True
when one of
stream
,
stream_text
,
stream_structured
or
get_data
completes.
stream
async
stream(
*, debounce_by: float | None = 0.1
) -> AsyncIterator[ResultData]
Stream the response as an async iterable.
The pydantic validator for structured data will be called in partial mode on each iteration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
debounce_by
|
float | None
|
by how much (if at all) to debounce/group the response chunks by. |
0.1
|
Returns:
Type | Description |
---|---|
AsyncIterator[ResultData]
|
An async iterable of the response data. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
stream_text
async
stream_text(
*, delta: bool = False, debounce_by: float | None = 0.1
) -> AsyncIterator[str]
Stream the text result as an async iterable.
Note
This method will fail if the response is structured,
e.g. if is_structured
returns True
.
Note
Result validators will NOT be called on the text result if delta=True
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
delta
|
bool
|
if |
False
|
debounce_by
|
float | None
|
by how much (if at all) to debounce/group the response chunks by. |
0.1
|
Source code in pydantic_ai_slim/pydantic_ai/result.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
|
stream_structured
async
stream_structured(
*, debounce_by: float | None = 0.1
) -> AsyncIterator[tuple[ModelStructuredResponse, bool]]
Stream the response as an async iterable of Structured LLM Messages.
Note
This method will fail if the response is text,
e.g. if is_structured
returns False
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
debounce_by
|
float | None
|
by how much (if at all) to debounce/group the response chunks by. |
0.1
|
Returns:
Type | Description |
---|---|
AsyncIterator[tuple[ModelStructuredResponse, bool]]
|
An async iterable of the structured response message and whether that is the last message. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
get_data
async
get_data() -> ResultData
Stream the whole response, validate and return it.
Source code in pydantic_ai_slim/pydantic_ai/result.py
245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
is_structured
property
is_structured: bool
Return whether the stream response contains structured data (as opposed to text).
cost
cost() -> Cost
Return the cost of the whole run.
Note
This won't return the full cost until the stream is finished.
Source code in pydantic_ai_slim/pydantic_ai/result.py
264 265 266 267 268 269 270 |
|
timestamp
timestamp() -> datetime
Get the timestamp of the response.
Source code in pydantic_ai_slim/pydantic_ai/result.py
272 273 274 |
|
validate_structured_result
async
validate_structured_result(
message: ModelStructuredResponse,
*,
allow_partial: bool = False
) -> ResultData
Validate a structured result message.
Source code in pydantic_ai_slim/pydantic_ai/result.py
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
Cost
dataclass
Cost of a request or run.
Responsibility for calculating costs is on the model used, PydanticAI simply sums the cost of requests.
You'll need to look up the documentation of the model you're using to convent "token count" costs to monetary costs.
Source code in pydantic_ai_slim/pydantic_ai/result.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
request_tokens
class-attribute
instance-attribute
request_tokens: int | None = None
Tokens used in processing the request.
response_tokens
class-attribute
instance-attribute
response_tokens: int | None = None
Tokens used in generating the response.
total_tokens
class-attribute
instance-attribute
total_tokens: int | None = None
Total tokens used in the whole run, should generally be equal to request_tokens + response_tokens
.
details
class-attribute
instance-attribute
Any extra details returned by the model.
__add__
Add two costs together.
This is provided so it's trivial to sum costs from multiple requests and runs.
Source code in pydantic_ai_slim/pydantic_ai/result.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|