Flight booking
Example of a multi-agent flow where one agent delegates work to another, then hands off control to a third agent.
Demonstrates:
In this scenario, a group of agents work together to find the best flight for a user.
The control flow for this example can be summarised as follows:
graph TD
START --> search_agent("search agent")
search_agent --> extraction_agent("extraction agent")
extraction_agent --> search_agent
search_agent --> human_confirm("human confirm")
human_confirm --> search_agent
search_agent --> FAILED
human_confirm --> find_seat_function("find seat function")
find_seat_function --> human_seat_choice("human seat choice")
human_seat_choice --> find_seat_agent("find seat agent")
find_seat_agent --> find_seat_function
find_seat_function --> buy_flights("buy flights")
buy_flights --> SUCCESS
Running the Example
With dependencies installed and environment variables set, run:
python -m pydantic_ai_examples.flight_booking
uv run -m pydantic_ai_examples.flight_booking
Example Code
flight_booking.py
import datetime
from dataclasses import dataclass
from typing import Literal
import logfire
from pydantic import BaseModel, Field
from rich.prompt import Prompt
from pydantic_ai import Agent, ModelRetry, RunContext
from pydantic_ai.messages import ModelMessage
from pydantic_ai.usage import Usage, UsageLimits
# 'if-token-present' means nothing will be sent (and the example will work) if you don't have logfire configured
logfire.configure(send_to_logfire='if-token-present')
class FlightDetails(BaseModel):
"""Details of the most suitable flight."""
flight_number: str
price: int
origin: str = Field(description='Three-letter airport code')
destination: str = Field(description='Three-letter airport code')
date: datetime.date
class NoFlightFound(BaseModel):
"""When no valid flight is found."""
@dataclass
class Deps:
web_page_text: str
req_origin: str
req_destination: str
req_date: datetime.date
# This agent is responsible for controlling the flow of the conversation.
search_agent = Agent[Deps, FlightDetails | NoFlightFound](
'openai:gpt-4o',
result_type=FlightDetails | NoFlightFound, # type: ignore
retries=4,
system_prompt=(
'Your job is to find the cheapest flight for the user on the given date. '
),
)
# This agent is responsible for extracting flight details from web page text.
extraction_agent = Agent(
'openai:gpt-4o',
result_type=list[FlightDetails],
system_prompt='Extract all the flight details from the given text.',
)
@search_agent.tool
async def extract_flights(ctx: RunContext[Deps]) -> list[FlightDetails]:
"""Get details of all flights."""
# we pass the usage to the search agent so requests within this agent are counted
result = await extraction_agent.run(ctx.deps.web_page_text, usage=ctx.usage)
logfire.info('found {flight_count} flights', flight_count=len(result.data))
return result.data
@search_agent.result_validator
async def validate_result(
ctx: RunContext[Deps], result: FlightDetails | NoFlightFound
) -> FlightDetails | NoFlightFound:
"""Procedural validation that the flight meets the constraints."""
if isinstance(result, NoFlightFound):
return result
errors: list[str] = []
if result.origin != ctx.deps.req_origin:
errors.append(
f'Flight should have origin {ctx.deps.req_origin}, not {result.origin}'
)
if result.destination != ctx.deps.req_destination:
errors.append(
f'Flight should have destination {ctx.deps.req_destination}, not {result.destination}'
)
if result.date != ctx.deps.req_date:
errors.append(f'Flight should be on {ctx.deps.req_date}, not {result.date}')
if errors:
raise ModelRetry('\n'.join(errors))
else:
return result
class SeatPreference(BaseModel):
row: int = Field(ge=1, le=30)
seat: Literal['A', 'B', 'C', 'D', 'E', 'F']
class Failed(BaseModel):
"""Unable to extract a seat selection."""
# This agent is responsible for extracting the user's seat selection
seat_preference_agent = Agent[
None, SeatPreference | Failed
](
'openai:gpt-4o',
result_type=SeatPreference | Failed, # type: ignore
system_prompt=(
"Extract the user's seat preference. "
'Seats A and F are window seats. '
'Row 1 is the front row and has extra leg room. '
'Rows 14, and 20 also have extra leg room. '
),
)
# in reality this would be downloaded from a booking site,
# potentially using another agent to navigate the site
flights_web_page = """
1. Flight SFO-AK123
- Price: $350
- Origin: San Francisco International Airport (SFO)
- Destination: Ted Stevens Anchorage International Airport (ANC)
- Date: January 10, 2025
2. Flight SFO-AK456
- Price: $370
- Origin: San Francisco International Airport (SFO)
- Destination: Fairbanks International Airport (FAI)
- Date: January 10, 2025
3. Flight SFO-AK789
- Price: $400
- Origin: San Francisco International Airport (SFO)
- Destination: Juneau International Airport (JNU)
- Date: January 20, 2025
4. Flight NYC-LA101
- Price: $250
- Origin: San Francisco International Airport (SFO)
- Destination: Ted Stevens Anchorage International Airport (ANC)
- Date: January 10, 2025
5. Flight CHI-MIA202
- Price: $200
- Origin: Chicago O'Hare International Airport (ORD)
- Destination: Miami International Airport (MIA)
- Date: January 12, 2025
6. Flight BOS-SEA303
- Price: $120
- Origin: Boston Logan International Airport (BOS)
- Destination: Ted Stevens Anchorage International Airport (ANC)
- Date: January 12, 2025
7. Flight DFW-DEN404
- Price: $150
- Origin: Dallas/Fort Worth International Airport (DFW)
- Destination: Denver International Airport (DEN)
- Date: January 10, 2025
8. Flight ATL-HOU505
- Price: $180
- Origin: Hartsfield-Jackson Atlanta International Airport (ATL)
- Destination: George Bush Intercontinental Airport (IAH)
- Date: January 10, 2025
"""
# restrict how many requests this app can make to the LLM
usage_limits = UsageLimits(request_limit=15)
async def main():
deps = Deps(
web_page_text=flights_web_page,
req_origin='SFO',
req_destination='ANC',
req_date=datetime.date(2025, 1, 10),
)
message_history: list[ModelMessage] | None = None
usage: Usage = Usage()
# run the agent until a satisfactory flight is found
while True:
result = await search_agent.run(
f'Find me a flight from {deps.req_origin} to {deps.req_destination} on {deps.req_date}',
deps=deps,
usage=usage,
message_history=message_history,
usage_limits=usage_limits,
)
if isinstance(result.data, NoFlightFound):
print('No flight found')
break
else:
flight = result.data
print(f'Flight found: {flight}')
answer = Prompt.ask(
'Do you want to buy this flight, or keep searching? (buy/*search)',
choices=['buy', 'search', ''],
show_choices=False,
)
if answer == 'buy':
seat = await find_seat(usage)
await buy_tickets(flight, seat)
break
else:
message_history = result.all_messages(
result_tool_return_content='Please suggest another flight'
)
async def find_seat(usage: Usage) -> SeatPreference:
message_history: list[ModelMessage] | None = None
while True:
answer = Prompt.ask('What seat would you like?')
result = await seat_preference_agent.run(
answer,
message_history=message_history,
usage=usage,
usage_limits=usage_limits,
)
if isinstance(result.data, SeatPreference):
return result.data
else:
print('Could not understand seat preference. Please try again.')
message_history = result.all_messages()
async def buy_tickets(flight_details: FlightDetails, seat: SeatPreference):
print(f'Purchasing flight {flight_details=!r} {seat=!r}...')
if __name__ == '__main__':
import asyncio
asyncio.run(main())