pydantic_ai.models.test
Utility model for quickly testing apps built with PydanticAI.
Here's a minimal example:
from pydantic_ai import Agent
from pydantic_ai.models.test import TestModel
my_agent = Agent('openai:gpt-4o', system_prompt='...')
async def test_my_agent():
"""Unit test for my_agent, to be run by pytest."""
m = TestModel()
with my_agent.override(model=m):
result = await my_agent.run('Testing my agent...')
assert result.data == 'success (no tool calls)'
assert m.agent_model_function_tools == []
See Unit testing with TestModel
for detailed documentation.
TestModel
dataclass
Bases: Model
A model specifically for testing purposes.
This will (by default) call all tools in the agent, then return a tool response if possible, otherwise a plain response.
How useful this model is will vary significantly.
Apart from __init__
derived by the dataclass
decorator, all methods are private or match those
of the base class.
Source code in pydantic_ai_slim/pydantic_ai/models/test.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
call_tools
class-attribute
instance-attribute
List of tools to call. If 'all'
, all tools will be called.
custom_result_text
class-attribute
instance-attribute
custom_result_text: str | None = None
If set, this text is return as the final result.
custom_result_args
class-attribute
instance-attribute
custom_result_args: Any | None = None
If set, these args will be passed to the result tool.
agent_model_function_tools
class-attribute
instance-attribute
agent_model_function_tools: list[ToolDefinition] | None = (
field(default=None, init=False)
)
Definition of function tools passed to the model.
This is set when the model is called, so will reflect the function tools from the last step of the last run.
agent_model_allow_text_result
class-attribute
instance-attribute
Whether plain text responses from the model are allowed.
This is set when the model is called, so will reflect the value from the last step of the last run.
agent_model_result_tools
class-attribute
instance-attribute
agent_model_result_tools: list[ToolDefinition] | None = (
field(default=None, init=False)
)
Definition of result tools passed to the model.
This is set when the model is called, so will reflect the result tools from the last step of the last run.
TestAgentModel
dataclass
Bases: AgentModel
Implementation of AgentModel
for testing purposes.
Source code in pydantic_ai_slim/pydantic_ai/models/test.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
TestStreamTextResponse
dataclass
Bases: StreamTextResponse
A text response that streams test data.
Source code in pydantic_ai_slim/pydantic_ai/models/test.py
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
TestStreamStructuredResponse
dataclass
Bases: StreamStructuredResponse
A structured response that streams test data.
Source code in pydantic_ai_slim/pydantic_ai/models/test.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
|