Skip to content

Outlines

Install

As Outlines is a library allowing you to run models from various different providers, it does not include the necessary dependencies for any provider by default. As a result, to use the OutlinesModel, you must install pydantic-ai-slim with an optional group composed of outlines, a dash, and the name of the specific model provider you would use through Outlines. For instance:

pip install "pydantic-ai-slim[outlines-transformers]"
uv add "pydantic-ai-slim[outlines-transformers]"

Or

pip install "pydantic-ai-slim[outlines-mlxlm]"
uv add "pydantic-ai-slim[outlines-mlxlm]"

There are 5 optional groups for the 5 model providers supported through Outlines:

  • outlines-transformers
  • outlines-llamacpp
  • outlines-mlxlm
  • outlines-sglang
  • outlines-vllm-offline

Model Initialization

As Outlines is not an inference provider, but instead a library allowing you to run both local and API-based models, instantiating the model is a bit different from the other models available on Pydantic AI.

To initialize the OutlinesModel through the __init__ method, the first argument you must provide has to be an outlines.Model or an outlines.AsyncModel instance.

For instance:

import outlines
from transformers import AutoModelForCausalLM, AutoTokenizer

from pydantic_ai.models.outlines import OutlinesModel

outlines_model = outlines.from_transformers(
    AutoModelForCausalLM.from_pretrained('erwanf/gpt2-mini'),
    AutoTokenizer.from_pretrained('erwanf/gpt2-mini')
)
model = OutlinesModel(outlines_model)

As you already providing an Outlines model instance, there is no need to provide an OutlinesProvider yourself.

Model Loading Methods

Alternatively, you can use some OutlinesModel class methods made to load a specific type of Outlines model directly. To do so, you must provide as arguments the same arguments you would have given to the associated Outlines model loading function (except in the case of SGLang).

There are methods for the 5 Outlines models that are officially supported in the integration into Pydantic AI:

Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

from pydantic_ai.models.outlines import OutlinesModel

model = OutlinesModel.from_transformers(
    AutoModelForCausalLM.from_pretrained('microsoft/Phi-3-mini-4k-instruct'),
    AutoTokenizer.from_pretrained('microsoft/Phi-3-mini-4k-instruct')
)

LlamaCpp

from llama_cpp import Llama

from pydantic_ai.models.outlines import OutlinesModel

model = OutlinesModel.from_llamacpp(
    Llama.from_pretrained(
        repo_id='TheBloke/Mistral-7B-Instruct-v0.2-GGUF',
        filename='mistral-7b-instruct-v0.2.Q5_K_M.gguf',
    )
)

MLXLM

from mlx_lm import load

from pydantic_ai.models.outlines import OutlinesModel

model = OutlinesModel.from_mlxlm(
    *load('mlx-community/TinyLlama-1.1B-Chat-v1.0-4bit')
)

SGLang

from pydantic_ai.models.outlines import OutlinesModel

model = OutlinesModel.from_sglang(
    'http://localhost:11434',
    'api_key',
    'meta-llama/Llama-3.1-8B'
)

vLLM Offline

from vllm import LLM

from pydantic_ai.models.outlines import OutlinesModel

model = OutlinesModel.from_vllm_offline(
    LLM('microsoft/Phi-3-mini-4k-instruct')
)

Running the model

Once you have initialized an OutlinesModel, you can use it with an Agent as with all other Pydantic AI models.

As Outlines is focused on structured output, this provider supports the output_type component through the NativeOutput format. There is not need to include information on the required output format in your prompt, instructions based on the output_type will be included automatically.

from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer

from pydantic_ai import Agent
from pydantic_ai.models.outlines import OutlinesModel
from pydantic_ai.settings import ModelSettings


class Box(BaseModel):
    """Class representing a box"""
    width: int
    height: int
    depth: int
    units: str

model = OutlinesModel.from_transformers(
    AutoModelForCausalLM.from_pretrained('microsoft/Phi-3-mini-4k-instruct'),
    AutoTokenizer.from_pretrained('microsoft/Phi-3-mini-4k-instruct')
)
agent = Agent(model, output_type=Box)

result = agent.run_sync(
    'Give me the dimensions of a box',
    model_settings=ModelSettings(extra_body={'max_new_tokens': 100})
)
print(result.output) # width=20 height=30 depth=40 units='cm'

Outlines does not support tools yet, but support for that feature will be added in the near future.

Multimodal models

If the model you are running through Outlines and the provider selected supports it, you can include images in your prompts using ImageUrl or BinaryImage. In that case, the prompt you provide when running the agent should be a list containing a string and one or several images. See the input documentation for details and examples on using assets in model inputs.

This feature is supported in Outlines for the SGLang and Transformers models. If you want to run a multimodal model through transformers, you must provide a processor instead of a tokenizer as the second argument when initializing the model with the OutlinesModel.from_transformers method.

from datetime import date
from typing import Literal

import torch
from pydantic import BaseModel
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration

from pydantic_ai import Agent, ModelSettings
from pydantic_ai.messages import ImageUrl
from pydantic_ai.models.outlines import OutlinesModel

MODEL_NAME = 'Qwen/Qwen2-VL-7B-Instruct'

class Item(BaseModel):
    name: str
    quantity: int | None
    price_per_unit: float | None
    total_price: float | None

class ReceiptSummary(BaseModel):
    store_name: str
    store_address: str
    store_number: int | None
    items: list[Item]
    tax: float | None
    total: float | None
    date: date
    payment_method: Literal['cash', 'credit', 'debit', 'check', 'other']

tf_model = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_NAME,
    device_map='auto',
    dtype=torch.bfloat16
)
tf_processor = AutoProcessor.from_pretrained(
    MODEL_NAME,
    device_map='auto'
)
model = OutlinesModel.from_transformers(tf_model, tf_processor)

agent = Agent(model, output_type=ReceiptSummary)

result = agent.run_sync(
    [
        'You are an expert at extracting information from receipts. Please extract the information from the receipt. Be as detailed as possible, do not miss any information',
        ImageUrl('https://raw.githubusercontent.com/dottxt-ai/outlines/refs/heads/main/docs/examples/images/trader-joes-receipt.jpg')
    ],
    model_settings=ModelSettings(extra_body={'max_new_tokens': 1000})
)
print(result.output)
# store_name="Trader Joe's"
# store_address='401 Bay Street, San Francisco, CA 94133'
# store_number=0
# items=[
#   Item(name='BANANA EACH', quantity=7, price_per_unit=0.23, total_price=1.61),
#   Item(name='BAREBELLS CHOCOLATE DOUG',quantity=1, price_per_unit=2.29, total_price=2.29),
#   Item(name='BAREBELLS CREAMY CRISP', quantity=1, price_per_unit=2.29, total_price=2.29),
#   Item(name='BAREBELLS CHOCOLATE DOUG', quantity=1, price_per_unit=2.29, total_price=2.29),
#   Item(name='BAREBELLS CARAMEL CASHEW', quantity=2, price_per_unit=2.29, total_price=4.58),
#   Item(name='BAREBELLS CREAMY CRISP', quantity=1, price_per_unit=2.29, total_price=2.29),
#   Item(name='T SPINDRIFT ORANGE MANGO 8', quantity=1, price_per_unit=7.49, total_price=7.49),
#   Item(name='T Bottle Deposit', quantity=8, price_per_unit=0.05, total_price=0.4),
#   Item(name='MILK ORGANIC GALLON WHOL', quantity=1, price_per_unit=6.79, total_price=6.79),
#   Item(name='CLASSIC GREEK SALAD', quantity=1, price_per_unit=3.49, total_price=3.49),
#   Item(name='COBB SALAD', quantity=1, price_per_unit=5.99, total_price=5.99),
#   Item(name='PEPPER BELL RED XL EACH', quantity=1, price_per_unit=1.29, total_price=1.29),
#   Item(name='BAG FEE.', quantity=1, price_per_unit=0.25, total_price=0.25),
#   Item(name='BAG FEE.', quantity=1, price_per_unit=0.25, total_price=0.25)]
# tax=7.89
# total=41.98
# date='2023-04-01'
# payment_method='credit'